
FUZZY MOTION CONTROLLERS AND HYBRIDS

A thesis presented in partial
fulfilment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

IN COMPUTER SCIENCE

Massey University,
Albany, New Zealand.

Anton Gerdelan

2011

Contents

Abstract xv

1 Overview and Aim of This Thesis 1
1.1 Method of Experimentation . 2

2 A Brief History of Motion Control in Animation 3
2.1 Introduction . 3
2.2 Overview of Key Algorithms . 5

2.2.1 Boids and Flocking . 6
2.2.2 Helbing’s Crowds . 7

2.3 Evolving Motion Controllers . 8
2.3.1 rtNEAT . 9

3 Fuzzy Logic Controllers 11
3.1 Overview . 11
3.2 Standard Pattern 2-Input Fuzzy Controller . 12
3.3 As Part of a Hybrid Controller . 15

4 Assembling a Toolkit for Doing Science with Simulations 17
4.1 Overview . 17
4.2 Constructing a 3D Simulation . 18
4.3 A Delta-State Video Capture Tool . 23
4.4 Real-Time Data Plots and Time Tools . 24
4.5 Measurements of Uncertainty . 25

5 A Modular Agent Middleware 27
5.1 Introduction . 27
5.2 Agent Society Model . 30
5.3 Modular Architecture . 32
5.4 Modelling the Environment . 35
5.5 Agent Behaviour . 39
5.6 Summary . 42
5.7 Possible Extensions to this Architecture . 43

6 On Design of Automatic Calibration Systems 45
6.1 Introduction . 45
6.2 Hybrid Algorithm . 46
6.3 Visualisation . 50
6.4 Proposed Self-Training Architecture . 50
6.5 Conclusions . 53

i

ii CONTENTS

7 Adding Agent-Based Road Networks To Simulations 55
7.1 Introduction . 55
7.2 Representing Complex Road Networks in 3D Simulations 57
7.3 Architecture for Non-Intrusive Data Structures . 61
7.4 Rapid Construction of Virtual Road Networks . 61
7.5 Future Works . 67
7.6 Discussion and Conclusions . 67

8 Agents and Motion Controllers for Road Vehicles 69
8.1 Introduction . 69
8.2 Agent Paradigm . 71
8.3 Path Planning . 73
8.4 Reactive Vehicle Control . 74
8.5 Discussion and Conclusions . 81

9 On Simulation Frameworks for Automatic Calibration Systems 87
9.1 Introduction . 87
9.2 Works of Note . 88
9.3 Initial Approach . 88
9.4 Preliminary Experiment . 90
9.5 Discussion and Conclusions . 93

10 A Genetic-Fuzzy System for Optimising Motion 97
10.1 Introduction . 97
10.2 Related Work . 98
10.3 Background: Fuzzy Controllers in Agent Steering 99
10.4 Architecture of the GFS . 101
10.5 Benchmarking the Genetic Algorithm Component 104
10.6 Experiments and Results . 105
10.7 Conclusions and Future Works . 112

11 Mechanix: Vehicle Mechanical Simulation 113
11.1 Overview of Architecture . 113
11.2 Visualisation . 115
11.3 Drive-train Simulation . 118
11.4 Resistance Forces . 125
11.5 Effective Torque . 126
11.6 Suspension Simulation . 126
11.7 Trailers, Articulated Vehicles, Trains & Trams . 131
11.8 Limitations . 131

12 Gremlin: A System for Benchmarking Mechanical Motion 135
12.1 Introduction . 135
12.2 Definition of Test-Course Environment . 136
12.3 Evaluation Method . 137
12.4 Control System Design . 140
12.5 Experiments and Results . 141
12.6 Future Works . 143

CONTENTS iii

13 Conclusions and Discussion 145
13.1 Review of Fuzzy Motion Controllers . 145
13.2 Conclusions on Genetic Hybrid Systems . 146
13.3 Overarching Conclusions . 147
13.4 Future Works . 148

Appendices 150

A Summary of Publications 153
A.1 Peer-Reviewed Articles . 153
A.2 Technical Reports . 153

B Reference Cards: Simulation Models and Specifications 155

Glossary of Terms 166

iv CONTENTS

List of Figures

1.1 Overview of subjects on which hybrid fuzzy controllers are based. 1

2.1 Levels of detail classified spatially from a camera. 4
2.2 The evolution of behavioural control in animation. 5
2.3 Boids used in animated film. 6
2.4 The boid “neighbourhood”. 7

3.1 Classifying frequency of light into fuzzy sets for colour. 12
3.2 2-input 1-output fuzzy controller design . 13
3.3 Example 5-set fuzzy value for speed. 14
3.4 Levels-of-detail behaviour. Fuzzy behaviour used for mid-distance pedestrians. . . . 16

4.1 A combination of simulation models displayed in a 3D simulation. 19
4.2 Production process for generating to-scale vehicle models. 20
4.3 Crowd simulation based on perceptual studies. 21
4.4 Motion capture acting and capture process. 22
4.5 User-assisted dynamic landscape generation. 23
4.6 Real-time fuzzy controller plot visualisation. 26

5.1 Agents with near-identical architectures in different scenarios. 28
5.2 A society of agents based on a hierarchical organisation. 30
5.3 An agent hierarchy used to control road traffic. 31
5.4 A typical “stack” architecture used for a robot soccer player agent. 32
5.5 A diagram of the rôle of middleware for agents. 33
5.6 A modular middleware architecture with exchangeable components. 34
5.7 A typical abstracted 2D environment map, and features. 36
5.8 Resolutions of planning used by a 3-level agent hierarchy in a 3D environment. . . . 38
5.9 Heuristic representation of the Fuzzy A* navigation algorithm 39
5.10 Convergent cascades of fuzzy associative memory matrices for action-selection. . . . 40
5.11 Agents cooperating over a shared world model . 41

6.1 Hybrid fuzzy-A* soccer robots. 45
6.2 To-scale model of real vehicle with mechanical simulation. 47
6.3 Representing combined heuristic cell weights in environment graph. 48
6.4 Classifying environment elements into overlapping fuzzy sets. 49
6.5 Scalable fuzzy navigation cascade with feedback loop. 49
6.6 Graphing navigation data in real time. 51
6.7 Proposed algorithm for machine-learning agent. 52

7.1 Simulated city requiring traffic. 57
7.2 Street map of city model area. 58

v

vi LIST OF FIGURES

7.3 Nodular graph representation of road network. 59
7.4 Lane occupancy and following distance model. 60
7.5 Non-intrusive traffic module design. 62
7.6 Laying road segments in an existing simulation. 63
7.7 Laying road networks over a 3D landscape. 64
7.8 3D Dublin Streets with Abstract Road Included. Birds-Eye. 65
7.9 Simulated traffic follow lane-mapped roads in 3D city model. 66

8.1 Agent traffic system in operation. 70
8.2 Test vehicle model: Enviro400 Bus . 70
8.3 Agent architecture for road traffic. 72
8.4 Fuzzy input set functions; angle to obstacle. 75
8.5 Fuzzy input set functions; angle to destination. 76
8.6 Fuzzy input set functions; distance to destination. 76
8.7 Fuzzy input set functions; distance to obstacle. 77
8.8 Fuzzy set midpoints; desired speed. 78
8.9 Fuzzy set midpoints; to-destination steering. 79
8.10 Fuzzy set midpoints; avoidance steering. 79
8.11 Prototype in operation; congestion. 82
8.12 Prototype in operation; lane demarcations. 83
8.13 Final product; simulated traffic with lane map and fuzzy steering. 85

9.1 Test environment for agents to navigate through. 91
9.2 To-scale 3D model of the T-28E vehicle with continuous tracks. 92
9.3 Score obtained by an agent moving through test environment 93
9.4 Architecture for a dynamic real-time training. 94

10.1 Diagram of fuzzy set functions; angles. 99
10.2 Overlapping fuzzy input sets in a spatial example. 100
10.3 Component architecture; fuzzy process. 101
10.4 Simulation plug-in architecture. 102
10.5 Operation of the breeding tool chain. 102
10.6 Mapping fuzzy rules to a chromosome representation. 104
10.7 Graph; controlled benchmark of genetic algorithm process. 106
10.8 Vehicle controlled by GFS move through test environment. 107
10.9 Graph; effect of mutation probability on fitness. 108
10.10Graph; effect of mutation range on fitness. 109
10.11Graph; effect of population size on fitness. 110
10.12Graph; effect of number of parents on learning curve. 111

11.1 Loosely coupled mechanical simulation architecture. 113
11.2 Views of a simulated Willys MB jeep. 116
11.3 Before and after effect of car paint shader. 117
11.4 Several vehicles rendered with shaders and compositors 119
11.5 Comparison of buses rendered with and without effects. 120
11.6 Comparison of DUKWs rendered with and without effects. 121
11.7 Diagram of forces acting in complete drive-train. 122
11.8 The RPM-torque curve for the Willys MB Jeep. 123
11.9 The RPM at final drive for gears in a jeep. 124
11.10A mechanical blueprint overlays its simulated 3D shape. 128
11.11An inexpensive method for simulating tracked vehicles. 129
11.12Views of animated Caterpillar track deformation. 130

LIST OF FIGURES vii

11.13Articulation in Mechanix with an unpowered trailer. 131
11.14Photo of a universal joint with axiis of rotation overlaid. 132

12.1 Close-up view of “forest” obstacle course. 138
12.2 Wide-angle view of “forest” obstacle course. 139
12.3 Control system used for destination-seeking behaviour. 141
12.4 A mixed function motion control system with algorithmic switches. 142
12.5 Accumulated mean fitness for pillars course. 144

viii LIST OF FIGURES

List of Tables

3.1 Complete table of example rules. 14

8.1 Fuzzy input term definitions; route following. 74
8.2 Fuzzy input term definitions; obstacle avoidance. 75
8.3 Fuzzy output term definitions; route following. 77
8.4 Fuzzy output term definitions; obstacle avoidance. 78
8.5 3 × 3 FAMM for desired speed; obstacle avoidance 80
8.6 3 × 3 FAMM for desired steering; obstacle avoidance 80
8.7 3 × 3 FAMM for desired speed; route following . 81
8.8 3 × 3 FAMM for desired steering; route following 81

10.1 Comparison of features of agent control systems. 99
10.2 Rules for change to steering in the obstacle avoidance component of a simulated car. 100
10.3 The most-fit chromosomes from selected generations in an evolutionary run. The

chromosomes are converging towards an optimal individual of all zeros. 105
10.4 Baseline genetic parameters for GFS . 112

B.1 Classical mechanics simulation model parameter values used. 156
B.2 Summary of mechanical simulation models used. 157
B.3 Specifications used for mechanical simulation of a Willys MB Jeep. 158
B.4 Specifications used for mechanical simulation of a Enviro 400 bus. 159

ix

x LIST OF TABLES

List of Algorithms

1 Mechanical simulation component update loop. 115
2 End run condition detection in “forest” scenario. 140
3 Logic for mixed motion control system output switch. 142

xi

xii LIST OF ALGORITHMS

Acknowledgements

This work would not have been possible without my supervisors at Massey University; Professor
Ken Hawick, who insisted upon the highest scientific standards, and Doctor Napoleon Reyes, who
inspired me to start moving things with fuzzy logic. I am in a great debt of gratitude to Profes-
sor Carol O’Sullivan, who provided support and guidance for 2 years of study in Ireland with the
Graphics, Vision, and Visualisation (GV2) group at Trinity College Dublin.

I would like to acknowledge my talented peers, from whom I have gained a great deal of knowl-
edge and experience during the last 3 years; Prof. Henry Rice, Dr Martin Johnson, Dr Chris Messom,
Dr Sébastien Paris, Dr Simon Dobbyn, Dr Rachel McDonnell, Dr Yann Morvin, Dr Veronica Sund-
stedt, Dr Guy Kloss, Dr Ljiljana Skrba, Dr Sophie Jörg, Dr Darren Caulfield, Dr Cathy Ennis, Dr
Steve Collins, Dr Rozenn Dahyot, Cormac O’Brien, Nithin Tharakan, Andrew Corcoran, Dr Michéal
Larkin, Dr Arno Leist, Dr Daniel Playne, Fintan McGee, Martin Pražák, Teo Susnjak, Brian Cullen,
Eric Risser, Jonathan Ruttle, Robert Smyth, Paul McDonald, and Tom Van Eyck.

I would also like to thank Craig Reynolds for his invaluable advice regarding motion control.

xiii

xiv LIST OF ALGORITHMS

Abstract

This thesis describes implementations of motion control systems that are based on fuzzy logic; fuzzy
motion controllers. The controllers are used by to drive a variety of simulated vehicles and computer-
animated characters. The problem of heading towards a destination whilst simultaneously avoiding
static and dynamic obstacles is addressed with fuzzy motion controllers. For situations where a level
above reactive motion control is required, such as path-planning behaviour or traffic rule follow-
ing, then hybrid algorithms are proposed; combining fuzzy motion controllers with other navigation
algorithms. Consideration is given to behavioural level of detail models, with transition between be-
havioural models of different complexity based on the proximity, or visual importance of characters
to the camera.

Fuzzy controllers have a set of fuzzy rules, or a “rule base” that defines the inference of the con-
troller. There is no assurance that hand-calibrated rule bases are optimal, and indeed that calibration
based on fixed test environment will apply well to a dynamic environment. Special consideration
is given to genetic-fuzzy systems, which use a genetic algorithm to automatically calibrate a rule
base. Various architectures for genetic-fuzzy system are proposed and evaluated including dynamic
systems, which have the ability to learn “on the fly”, rather than in fixed experiment scenarios. A re-
lationship between genetic algorithm parameters and time-efficient fitness improvement is found.The
time requirements of training more complex “cascading” fuzzy systems are discussed. Distributed
and parallel training models are also considered.

A new, modular agent middleware is proposed, which is the underpinning software that perceives
the complex environment, feeds inputs into the fuzzy motion controllers, and effects output actions
for each character and vehicle. The middleware model is successfully used to drive a range of
vehicles and characters used in experiments.

The problem of evaluating motion controllers within a scientific framework is discussed. Sev-
eral candidate solutions are used, and a system for objectively evaluating mechanically simulated
vehicle motion is defined and evaluated. A complete tool-chain for designing complex simulations
and doing scientific experiments with them is is developed and discussed in detail, including simu-
lation software design methods, libraries, visualisation tools, and useful algorithms, a well-defined
mechanical simulation system, and practices for collecting data from simulations, and quantifying
uncertainty.

xv

xvi LIST OF ALGORITHMS

Chapter 1

Overview and Aim of This Thesis

This thesis investigates new motion controllers for road and all-terrain vehicles (cars, trucks,
caterpillar-tracked vehicles, etc.). The motion controllers handle steering, acceleration, braking,
and gear changing behaviour, based on perceptual information from the environment; information
about destinations, obstacles, and the current state of the vehicle. The controllers are designed to
fill the rôle of a human driver and can therefore be described as a kind of artificial intelligence (AI).
The environments studied in this work are all real-time 3D complex simulations, and are largely
reproductions of environments from real-world data.

Control
Theory

Computer
Graphics &
Animation

Mechanical
Engineering

Evolutionary
Algorithms

Complex
Simulations

Collectively form a complex system

Controller in
complex system

Improve controller
as part of system

Hybrid Fuzzy
Controller

Figure 1.1: Areas contributing to Hybrid Fuzzy Controllers; with complex system theory shaded
grey, and control theory shaded green. The “hybrid” title implies either the inclusion of multiple
control theory areas or evolutionary algorithms into the controller.

The specific aim of this work is to:

• Design, implement, and evaluate new fuzzy-logic based controllers (using fuzzy control the-
ory) for these complex simulated environments.

1

2 CHAPTER 1. OVERVIEW AND AIM OF THIS THESIS

• Where controller design is extended to incorporate some non-fuzzy control theory to solve a
particular complex problem (hybrid controllers).

Figure 1.1 illustrates the bodies of theory contributing to this work. The resulting controllers are
part of a complex system based on a real-time simulation, rendered with 3D graphics, and incorporat-
ing mechanical models of the vehicles, and the controllers themselves are built from various control
theory (including fuzzy control theory), with some controllers using an evolutionary algorithm to
self-improve control performance as part of the complex system.

1.1 Method of Experimentation
The scientific method is applied to the design-evaluation process for each controller studied in this
thesis. The basic process here is as follows:

1. A simulation is constructed with mathematical models representing a real-world environment
and vehicles

2. Real-world problems emerge (driving from A to B whilst avoiding static and moving obsta-
cles)

3. Some rules and constraints are added (road rules, for example)

4. A conjecture is devised for solving the problem with a control system

5. The control system is implemented and evaluated as a solution to the problem

6. And the results presented with appropriate measurements of error.

Each chapter in this thesis introduces a new controller. The conjecture, design, and evaluation
criteria used differ from controller to controller, and are specified at the beginning of each chapter.
The later chapters in this thesis, Part IV, introduce fuzzy controllers that have an evolutionary, self-
training, component.

The main contribution of this work is the design and evaluation of fuzzy controllers that self-train
in real-time, which means that they have the potential to adapt to an environment as it changes, a
behaviour that has not been studied extensively in this type of controller. In particular, a system for
evaluating adaptivity has developed for this thesis; until now such a technique has not been available
for this type of behaviour.

Chapter 2

A Brief History of Motion Control in
Animation

2.1 Introduction
Autonomous computer-controlled entities can make excellent extras in film scenes as large animated
crowds, entertaining opponents in computer games, and to some extent useful autopilots or robotic
drivers in real vehicles. The problem domain in each of these applications is similar; an actor or
vehicle has to be moved through a noisy or complex environment. A noisy environment is one with
a large amounts of unimportant information that needs to be selectively filtered out or ignored. When
our actors and vehicles have a degree of autonomy, the software controlling each one can be called
an agent, a term that will be used throughout this document. The type of motion desired from agents
operating in these environments is some combination of:1

1. realistic; a simulation of real movement patterns

2. convincing; what an audience perceives to be realistic

3. efficient; minimising energy or reducing collisions

4. entertaining; motion may aim for cartoon-like motion

The distinction and balance between these four aims is often unclear in the literature; the aim is
not always well understood or clarified by researchers. It is very easy to make false assumptions that
efficient motion is realistic motion, or that realistic motion is convincing or desirable in games or
film. From this complicated mixture of motion and steering aims several distinct schools of thought
have emerged:

• The principle of least effort (PLE). Aim: a combination of realistic/convincing/efficient mo-
tion

• Data-driven crowds. Aim: realistic motion

• Simulation based on perceptual studies. Aim: convincing motion

• Level of detail (LOD) crowd behaviour. Aim: a balance of efficient/convincing motion

1Material in this chapter expands original research first published as A. Gerdelan, “A Brief History of AI in Entertainment,”
Tech. Rep. CSTN-105, CSSG, Institute of Information and Mathematical Sciences, Massey University, Albany, New Zealand,
November 2009. [1]

3

4 CHAPTER 2. A BRIEF HISTORY OF MOTION CONTROL IN ANIMATION

A popular approach to motion control for crowd simulation is based on the principle that pedes-
trians will always try to minimise effort in going from A to B; often referred to as the principle of
least effort (PLE) [2], and that introducing individual variation or detailed autonomy into the control
algorithm is less important because the overall or aggregate motion flow will be realistic and produce
emergent effects that are consistent with collected real-world data.

Controllers designed for realism tend to use a data-driven approach to evaluate the effectiveness
of the controllers, and are used for architectural design planning applications such as the Sydney
2000 and London 2012 Olympic Games [3]. Modern data-driven studies show that people in real
crowds in fact do not behave like the established efficiency-driven automaton models [4,5], and that
there is also a high degree of variation of movement of individuals within a crowd based on age,
gender, disability, emotional state, and other factors that are visible in aggregate motion [5]. This
makes data-driven motion controllers very difficult to validate, and renders simulations driven by
data from a single region non-generalisable [6] to other populations.

Motion control and animation that aims for perceived realism can be evaluated by psycho-visual
tools and user-studies. Such works aim to evaluate the perceptual importance of new motion tech-
niques and to find thresholds of perceptual importance in order to optimise techniques. Recent
works have studied the importance of group formations in believable crowds [7], the amount of
variety required within a crowd for it to be believable [8], and compared pedestrian motions using
perception-based metrics [9].

Figure 2.1: A spatial representation of classification of discrete levels of detail based on a camera
position and orientation. The depicted method is using both distance, and yaw angle from camera
orientation to determine each level. There are 9 levels of detail here; green 0, 1, 2, yellow 0, 1, 2,
and red 0, 1, and 2. The idea here is that detail can be rolled off at up to 9 different discrete levels as
objects are further away from the camera, and off either side of the screen. Information from outside
the frustum (coloured area) is discarded completely.

The level of detail (LOD) principle [10] is used in 3D graphics to reduce the rendered detail of
objects that are deemed perceptually less important [10–12]; which usually means further from the
camera (see Figure 2.1). The idea is that the simulation is then more efficient and thus more detailed
or more numerous objects can be simulated. This principle has also been applied to behavioural
detail [12, 13]. The computational time slice allowed for steering vehicles or actors in perceptually
important zones is then larger than those off-screen or in the background, making this a technique
that aims to balance computational efficiency with perceived realism. An ongoing area of study is
at what angle and distance from the scene viewpoint that these levels of detail change can occur
without a perceived loss to realism [14, 15]

Controllers that aim for entertaining motion are evaluated by artists, film directors, and preview
audiences [16,17]. Entertainment-driven motion is very difficult to design for as realistic motion may

2.2. OVERVIEW OF KEY ALGORITHMS 5

Figure 2.2: This diagram gives us an overview of the “evolution” of behavioural control theory for
agents in computer animation. This model has been adapted from Donikian (2009) [19]. The topics
in the model are not arranged in the order of their introduction in the literature broadly speaking
(finite state machine (FSM)-type models have been in existence for hundreds of years), but rather
specific to their adaptation to motion control in animation. The model is divided into 3 “generations”,
starting in the 1980s with the introduction of boids, and the adaptation of basic automaton models
to software agents. The 2nd generation moves onto more complex models. FSMs are included here
because this coincides with the introduction of FSMs as ubiquitous game “AI” in the 1980s and
1990s. The latest generation introduces some topics that will be explored in this thesis, and the
emergence of data-driven approaches, where motion-control algorithms are designed to reproduce
realistic behaviours by correlating with real recorded data.

be not actually desirable in entertainment. Designers of such controllers take great care in providing
suitable “knobs and dials” that allow the motion to be customised during preview screenings [16].
A special cartoon-like motion was developed for a character in the Wall-E film, using a customised
spring equation [16]; a technique that could not have been based on a realistic model. MASSIVE [18]
software was used in both the Wall-E film and the Narnia film [17] for motion of large groups of
characters. Amongst the many techniques used by MASSIVE, the reactive motion uses physics-
based objects that encompass a space larger than the characters, which when colliding give the
impression that the characters are avoiding each other, when computationally their physics bodies
are actually colliding and sliding around each other [18].

2.2 Overview of Key Algorithms

Approaches to solving motion control and steering problems for animation have evolved in several
distinct generations. Donikian (2009) [19] classifies reactive behavioural algorithms (of which mo-
tion control is one) into two previous generations, with proposed cognitive science models consid-
ered part of a new generation. The first generation in this classification is divided into three parallel
streams of research; sensor-effector models, behaviour rules models, and finite automaton models.
This classification system can be extended by considering fuzzy, evolutionary, data-driven and LOD
algorithms to be part of the latest generation of research. Figure 2.2 illustrates this extension of
Donikian’s model.

6 CHAPTER 2. A BRIEF HISTORY OF MOTION CONTROL IN ANIMATION

2.2.1 Boids and Flocking
Reynolds’ 1987 SIGGRAPH article [20] introduces an animation system for bird-oid (bird-like)
actors called “boids”. The article was accompanied by a short film featuring boids. A still is shown
in Figure 2.3. The key idea of boids is to approximate the real world motion of groups of animals
(flocks, herds, and schools) by simulating each individual within the group, and having the overall
(aggregate) motion of the group emerge as a result. Each individual is moved using a balance of
attractive and repellent forces. The actors in boid system are also able to work within 3D physics
constraints. The flight dynamics required for realistic bird animation and motion are detailed in the
article.

Figure 2.3: A screen capture from the SIGGRAPH Electronic Theatre short film Stanley and Stella
in: Breaking the Ice (1987), featuring boid-driven birds and fish. A group of boids move in a group
by a careful balancing of steering towards the average heading of the near neighbours, and basic
avoidance of neighbours. Convincing flocks emerge from these basic rules.

Boids extends particle systems [21] by adding orientation, collision avoidance, and semi-
autonomous motion. Each actor (a concept now synonymous with an agent [22]) is given a limited
perception of the world with which to make steering decisions. Reynolds finds that if the actors are
given complete information (the locations of all of the actors in the flock) then the aggregate motion
of the flock is unrealistic or produces undesired centrifugal formations [20]. For this reason each
actor is given only the location of its immediate neighbours in the flock, and a limited field of view
as depicted in Figure 2.4.

Reynolds’ flocking mechanism has become a standard in computer animation. Flocking has three
components:

1. Separation: actors steer to avoid neighbours

2. Alignment: actors steer toward the average heading of neighbours

2.2. OVERVIEW OF KEY ALGORITHMS 7

3. Cohesion: actors steer toward the average position of neighbours

Figure 2.4: A boid’s neighbourhood is limited to a distance, and an angle from its heading orienta-
tion, such that it only considers immediate neighbours in its steering behaviour. Interestingly, if the
boid is allowed to consider all of its neighbours then flocking behaviour does not emerge, but rather
flock formations depend on having only a limited neighbourhood perception.

Reynolds does not detail how the various forces are balanced other than to suggest the use of a
dampening function [21]. This is no doubt a constraint satisfaction problem that requires quite some
tedious manual trial and error (a problem common to many motion controllers).

The flocking mechanism is easily confused when presented with geometric obstacle problems.
Reynolds suggests in the original article that this is due to the lack of a detailed perception model of
virtual computer vision [21], but it is now known that the problem is more complex than this, and
requires inclusion of a path-planning algorithm at a higher level. Finding a good balance between
reactive steering methods such as the flocking mechanism, and path-planning navigation methods
which guide them is an active research topic [13, 23–26].

An adapted copy of Reynolds’ original boids software was used to animate swarms of bats and
flocks of penguins in the 1992 action movie Batman Returns. The theory also contributed to the
emerging artificial life (AL) [27,28] field, with the aggregate group behaviour an example of the AL
principle of emergence.

Boids has also been notably extended to use fuzzy controllers in place of the original mathe-
matical decision-making model [29]. The authors found that fuzzy logic controllers were a solution
to dealing with environment noise (many variable inputs to the decision process) and enabled more
human-like or animal-like decision making.

2.2.2 Helbing’s Crowds
Another notable work is Helbing’s 1995 article on crowd simulation “Social force model for pedes-
trian dynamics” [30]. The article appears in the Physical Review E journal, which is home to key
works in the area of traffic microsimulation, that is, traffic simulations based on fluid dynamics
models which model gas and liquid flows but simulate the individual vehicles within the flow, rather
than just the overall pattern of movement [31–33]. Helbing adapted the microsimulation model
and applied it to the movement of pedestrians in crowds. The model is a basic attractive/repellent
force model as seen in earlier the Boids [20] flocking mechanism. Interestingly Helbing has not
drawn on Reynolds’ attractive/repellent force model for computer animated animal groups, despite
its similarities.

In the article Helbing gives us basic simulation layouts but no experiment result data which
would indicate the effectiveness of the system in terms of crashes or expediency. Like Reynolds’

8 CHAPTER 2. A BRIEF HISTORY OF MOTION CONTROL IN ANIMATION

Boids article it is then really a proposal rather than a scientific study, but along with Boids it has
since been adopted as a benchmark system for evaluating the effectiveness of new crowd simulation
systems [13, 19, 24]. At this stage the emerging crowd animation field had still not crossed domains
or levered the considerable body of similar research that had been done in psychology or robotics
where the limitations of such approaches had already been analysed in detail [34]. Helbing’s agent
architecture; the “process leading to behavioural changes” [30] is almost identical to the concept
of the Belief-Desire-Intention (BDI) agent model introduced by Bratman in 1987 [22], but without
providing any of the concrete implementation details that BDI-based hierarchical architectures had
developed for robot applications [35]. The concept of planning (of paths) or higher-level behaviour
has not been given any special consideration; thus the system is completely reactive and therefore
has similar limitations to Reynolds’ flocks, as discussed in the previous section. It is not until
Reynolds’ later works [36] that forward-planning ideas are given serious consideration within the
crowd simulation field.

The article makes much mention of its relevance to empirical data, and is built on the assumption
that the emergent flow movement of real crowds is predictable, and gas or fluid-like. This assumption
has been carried by the following generation of crowd simulations, but evidence of this correlation
is not provided other than to cite a 1970 comparison of pedestrian flow data to the Navier-Stokes
equation, and two of eight references to Helbing’s own works which introduce a similar study with
Boltzmann-like models. Modern data-driven models [5] contradict many of these claims; which find
that the movement of pedestrians in crowds is indeed chaotic, containing many “curious” or other-
wise inefficient patterns of movement which are not predictable by gas and fluid-dynamic equations.

Some emergent behaviour arrives from Helbing’s crowd simulations; lane-following in open
spaces, which is now widely regarded as unrealistic and undesirable [13], and oscillating direction
changes at intersections which Helbing points out is a limitation of the approach.

For large-scale crowd simulations a Helbing-like particle or fluid model focusing on aggregate
motion is still by far the most computationally efficient approach for producing massive crowds of
animated pedestrians [37].

2.3 Evolving Motion Controllers
There are two basic problems with agent controllers that act in complex environments;

• Control systems have a lot of functions, variables, and rules that need optimising

• Behaviours may need to adapt to change in the environment

Therefore designing motion controllers by hand is a very difficult task, and in a stochastic envi-
ronment there is usually no guarantee that they are optimal. Hand-designed controllers are also not
able to adapt to unexpected change in conditions. Evolutionary algorithms have the potential to solve
either of these problems. These are algorithms that are based on biological “survival of the fittest”
type selection. The mechanism behind this is that the agents can try a range of behaviours, evaluate
their effectiveness, keep the best behaviours, and use them to generate a new set. This should lead
to a kind of self-tuning controller.

There are two categories of evolutionary motion controller;

1. Static tuning: Continually tries to solve a fixed (static) problem in batches.

2. Dynamic learning: Learns “on the fly”; adapts its behaviour continuously as it moves.

The static approach tunes a controller against a fixed problem. This approach is unable to solve
the problem of adapting to change. Static tuning is characterised by batches of evaluation runs
that are done prior to “final” implementation. A good example of this approach is Reynolds’ 1994
algorithm for evolving corridor-following motion [38], where it was initially found that learning

2.3. EVOLVING MOTION CONTROLLERS 9

a fixed problem in a strongly-objective evaluation forced the agent to learn the quirks of that exact
problem such that the resulting behaviour did not generalise to similar problems [38] (over-training).
Artificial noise (“jitter”) was injected into the training to improve the generalisation of the result.

The corridor-following approach was extended to automatically discover agents that would learn
how to play the game of “tag” [39], which moves more into the dynamic learning area. Reynolds’
discusses the potential of using physically simulated vehicles (with mass, momentum properties
etc.) as being a future work of merit as it requires the optimisation of a more complicated control
programme [39].

There are very few dynamic learning algorithms for motion control, and self-adapting motion
is regarded as a “holy grail” problem due to the complexity of controller design required, however,
special mention in this category must be given to the real-time NeuroEvolution of Augmenting
Topologies (rtNEAT) algorithm.

2.3.1 rtNEAT
A significant recent advance made possible by more powerful computer hardware is the discovery
that machine learning techniques can be adapted to run in real-time, evolving vehicle controllers
in a matter of minutes. A recent academic work of note in this area is the rtNEAT algorithm [40]
which uses an adapted genetic neural network (GNN) (the NEAT algorithm) to perform very fast
learning by augmenting a neural network (NN). rtNEATwas implemented in a research-orientated
video game called NeuroEvolving Robotic Operatives (NERO) [41] which used a user-in-the-loop
approach to learning. In NERO the user (a player) directs the training of a team of GNN-enabled
characters by changing the training environment itself in real-time, and by adjusting a punishment-
and-reward scheme (reinforcement learning). The characters are able to learn reactive movement,
basic path planning, and some basic military-type tactics in less than an hour [42, 43], with the
created behaviour unique to the user’s input [44].

The most noteworthy feature of rtNEAT as implemented in NERO is the treatment of fitness
evaluation. Defining a good fitness function is the paramount problem of all genetic systems. A
fitness function is responsible for defining a problem to be solved by a genetic algorithm (GA)
in clear, mathematical terms. A fitness function that is too simple or too complex will prohibit
or confuse the learning process. The weighting given to different inputs to the fitness function
will affect the priority of tasks; the ideal weighting is usually not known prior to testing. NERO
addresses these problems by simply passing them onto the lap of the human user who acts as a
training supervisor. The advantage of this approach is that the fitness function itself is dynamic;
the supervisor can adjust the reinforcement learning weightings as the learning happens to learn
additional complex behaviours [45]. The disadvantage is that the user needs to be present during
the whole training process; therefore this approach is only suitable for a selected sub-set of training
applications.

Because rtNEAT is built on GA and artificial neural network (ANN) technology it has all of the
advantages and disadvantages of these algorithms; NNs are a black box; it is very difficult to dissect
or manually tweak the resulting solution (the network itself) after training. Networks will almost
certainly not solve a given problem as well as a specific hand made solution taking all problem
features into account. The black box nature of neural networks can become a major frustration to
designers seeking to improve the problem-solving efficiency of the network. With these limitations
taken into account it can be said that the designers of rtNEAT have found an ideal application in
the NERO game; a user-driven fitness evaluation scheme to address the fitness design problem, a
stochastic and hard-to-specify problem domain which is ideal for neural-network learning, where
the outcome is the effectiveness of a competitive team of characters versus another GNN team with
its own training, so even if the neural network is not an ideal solution to a problem, it is at least on
an even playing field.

10 CHAPTER 2. A BRIEF HISTORY OF MOTION CONTROL IN ANIMATION

Chapter 3

Fuzzy Logic Controllers

3.1 Overview
Previous works, contributing to this thesis, have made extensive use of fuzzy controllers for control-
ling soccer robots, both with remote-controlled vehicles, and with simulated robots [46–48]. This
thesis focuses on fuzzy controllers for motion control in simulations and games, but it is worth not-
ing that the control theory generalises across domains, and can apply equally well to motor-based
motion control as it does to software-only motion control problems.1.

Fuzzy sets were introduced by Lofti Zadeh as a mathematical theory in 1965 [49], extending
classical sets. Fuzzy sets have their own set operators, equivalent to the union, complement, etc.
operators of classical set theory. Fuzzy sets allow us to represent a partial truth, or imprecise values
between completely true and completely false. Extending this classification tool to a fuzzy logic
gives us a mechanism for discriminating imprecise or changing data into a small group of overlap-
ping fuzzy sets. From this foundation a very simple judgement-based reasoning can be created; fuzzy
inference [50], which can deal with complex real-world data; mimicking human decision-making.
Equipping fuzzy inference with sensors and implementing them in a system with a control theory-
based feedback loop enables the building of fuzzy controllers. Fuzzy controllers require very little
computational overhead, and can also produce smooth transitional outputs. Fuzzy logic is there-
fore an ideal candidate for modelling human, animal, or vehicle behaviour in large-scale real-time
simulation.

A good example for how fuzzy sets might be used to classify a real, continuous value into sets is
colours. In his Opticks, Sir Isaac Newton observes;

“the Spectrum formed by the separated Rays...with this Series of Colours, violet,
indigo, blue, green, yellow, orange, red, together with all their intermediate Degrees in
a continual Succession perpetually varying. So that there appeared as many Degrees of
Colours, as there were sorts of Rays differing in Refrangibility”. [51]

Newton has made several classifications of bands of colour, which is very convenient for human
perception, but also notes the intermediate degrees between each colour, which are very hard to
represent using the same kind of classical sets. The strength of fuzzy sets is that they are able
to represent both definite classifications, and intermediate or overlapping classifications, with one
model. Each fuzzy set is defined by a mathematical function, in the same way that a classical set
is defined, but it is also possible to overlap these functions, and afterwards perform all of the if-
then-else-type logical operations with the same ease as with Boolean logic values. An example of
this can be built from Newton’s observation. Taking the frequency of light in teraherz (THz) as

1 Videos of various simulations and games using the fuzzy logic controllers developed in the work are available at http:
//antongerdelan.net/videos.html under the heading Fuzzy controllers

11

http://antongerdelan.net/videos.html
http://antongerdelan.net/videos.html

12 CHAPTER 3. FUZZY LOGIC CONTROLLERS

the continuous real variable, this can be classified into distinct colours. Fuzzy values made from 3
membership functions or fuzzy sets are used in the standard pattern fuzzy controllers in this thesis,
so for this example we can consider the part of the spectrum that contains the 3 colours red, green,
and blue. Figure 3.1 illustrates the process of classifying a real value into fuzzy sets. In the literature
this process is referred to as fuzzification; or where crisp values are fuzzified into fuzzy sets.

Figure 3.1: Here we have an example of fuzzy set classification of colours from frequencies of light.
This example classifies into 3 fuzzy sets; one set each for the colours red, green, and blue. Set
functions overlap, which allows us to classify intermediate colours as partial members of 2 sets.

In Figure 3.1 each colour has a mathematical function which defines its limits, but also the degree
of membership in that set for each value of frequency. As we would find with classical sets, these
fuzzy sets have definite frequency bands where we can consider a frequency as wholly one colour,
and none of the others, but we also have intermediate bands; oranges, yellows, cyans, etc. where we
can consider a colour to be a partial member of two colours. These partial members are awarded
a set membership value of between 0 and 1 in each of two sets. A frequency of 650 THz would
give us the set memberships of 0.0 red, 0.0 green, and 1.0 blue. A frequency of 482.5 THz (one
quarter of the way between full red and full green), would give us set membership values of 0.75
red, 0.25 green, and 0.0 blue. All three of these membership values make up a single fuzzy value. Of
course it is possible to represent fuzzy values with more than 3 sets; memberships for more colours
for example, however, the more sets that make up a fuzzy value, the larger the set of rules that are
required for fuzzy inference. The goal, therefore, is the represent a value with a minimum number
of sets, whilst still retaining enough continuous detail. The motion controllers in this thesis will not
be classifying colours, of course, but distances, angles, speeds, and other data relevant to motion
control.

3.2 Standard Pattern 2-Input Fuzzy Controller
Fuzzy logic has been employed by other agent simulations for its flexible nature - easily expanding
to accommodate more complex input variables [52]. The fuzzy control systems that in this thesis
are based on a two-system pattern. This model comprises a route-following system, and a dynamic
obstacle avoidance system; these systems are counter-balanced and roughly follow a route of way-
points whilst simultaneously avoiding static and dynamic obstacles. These control systems therefore

3.2. STANDARD PATTERN 2-INPUT FUZZY CONTROLLER 13

handle reactive motion control. Discussed in the following chapters, this model has been used in the
works described in this thesis, with varying degrees of success, to drive crowds of pedestrians with
staggered levels of detail, individual cars in simulated road traffic, physically simulated vehicles,
all-terrain vehicles, herds of animals, and self-training vehicles. The motion control model has been
adapted somewhat for each implementation, the details of which are described in relevant chapters,
but the general arrangement is described in this chapter.

Figure 3.2 gives us a breakdown of the basic fuzzy controller architecture used throughout the
works in this thesis. In segment (a) in the figure, we have a representation of two fuzzy classifiers
as described in the previous section. Each one of these classifiers takes a single continuous input
(usually a distance or an angle). These are then “fuzzified” into partial memberships of 3 fuzzy sets,
based on 3 fuzzy set functions, as in Figure 3.1.

fuzzy
controller

crisp input

crisp input

crisp output

(a)

crisp input fuzzify 3-set fuzzy value

crisp input fuzzify 3-set fuzzy value

set functions

set functions

fuzzy rules

inference

5-set fuzzy value

crisp outputaggregateset functions

(b)

(c)

(d)

Figure 3.2: The 2-input 1-output fuzzy controller design. The controller uses fuzzy classification
(a), as explained in the previous section, inference or rule-lookup (b), and de-fuzzifies by aggregation
(c). The full process can be condensed into a single controller, with symbol (d).

With inputs expressed as fuzzy truth values we are able to perform fuzzy logic operations by
matching inputs with a fuzzy rule. This process is called fuzzy “inference”, and is depicted in
window (b) of Figure 3.2. The inference process requires a set of fuzzy rules, matching every
possible combination of inputs together. For two fuzzy values of 3 sets each we therefore need 9
rules to match all possibilities. The first 3 of 9 rules from a fuzzy controller are:

I f t h e o b s t a c l e i s a n e a r d i s t a n c e away ,
and t h e o b s t a c l e i s a nar row a n g l e from t h e head ing ,
t h e n change speed t o z e r o .

I f t h e o b s t a c l e i s a medium d i s t a n c e away ,
and t h e o b s t a c l e i s a nar row a n g l e from t h e head ing ,
t h e n change speed t o slow .

I f t h e o b s t a c l e i s a f a r d i s t a n c e away ,
and t h e o b s t a c l e i s a nar row a n g l e from t h e head ing ,
t h e n change speed t o medium .

. . .

14 CHAPTER 3. FUZZY LOGIC CONTROLLERS

Using fuzzy inference, a designer can make a series of rules in the same way as conditional
logic but the rules are applied to continuous values. These rules are taken from a controller used for
obstacle avoidance. Note that the outputs of each rule are also a fuzzy value.

Fuzzy rules for inference can be expressed in an abbreviated form in a rule table, as in Table 3.1.
To cover cases where inputs are a partial member of multiple input sets because the input values
fall inside overlapping set membership functions all of the rules are evaluated, and using the fuzzy
Zadeh union operator [50], the minimum of the input memberships for each rule are selected, and
then the Zadeh complement operator is applied to select the maximum output value of each rule.

narrow mid wide
near zero slow medium

medium slow medium fast
far medium fast top

Table 3.1: This table is the complete set of example rules as in the natural language sample earlier
in the section. The two input fuzzy values are an angle, which is split between 3 fuzzy sets (narrow,
mid, and wide) and a distance, with sets (near, medium, and far). Outputs are fuzzy sets for a vehicle
speed. Note that there are 5 output sets for one fuzzy speed value.

The fuzzy values used for output throughout this thesis are a 5-set model. Rather than define
an overlapping function for each set, as with the 3-set values, a single mid-point value (sometimes
referred to as a “singleton” value in the literature) is defined for each set. Figure 3.3 gives us the
singleton set functions. The single-point values are used for the “defuzzification” process, that is,
converting fuzzy set memberships back into crisp values.

Figure 3.3: This graph is an example of a standard 5-set fuzzy output value. The plots give the
membership set functions for each of the 5 fuzzy sets that make up the “speed” fuzzy value. Each
set has only a single value defining it. This is because these sets are used to convert a partial fuzzy
set membership values into a single crisp, or real output value.

3.3. AS PART OF A HYBRID CONTROLLER 15

To obtain a final crisp output value all of the fuzzy output sets are aggregated together using
a centre of mass function, weighted by the degree of membership of each fuzzy input set. The
aggregation process is modelled by Equation 3.1.

y =
m0 ∗ w0 +m1 ∗ w1 + ...+mn ∗ wn

w0 + w1 + ...+ wn
(3.1)

Where y is the crisp output, m is a mid value for a fuzzy output set, and where w is the weight
value, between 0 and 1; the degree of membership of a particular fuzzy output set. In the vehi-
cle controller example this crisp output will be a single speed adjustment value in km/h. Where
most if-then-else decision making systems produce stepped outputs as cases change, this aggrega-
tion procedure allows us to smoothly transition outputs between cases. This means that as the values
for input angles and distances move from full membership of one set to another; for example tran-
sitioning from 1.0 “far” distance to 1.0 “near” distance as a vehicle moves closer to an obstacle,
the weighting assigned to each output rule in Table 3.1, and therefore matching fuzzy output set,
gradually shifts “top” 100.0 km/h to “medium” 50.0 km/h, with reference to Figure 3.3.

3.3 As Part of a Hybrid Controller
There are several reasons why we might want to combine a fuzzy motion controller with another sort
of motion controller; creating a kind of “hybrid”. The most obvious cases are with algorithms that are
very good at path-planning or use a search algorithm, which fuzzy controllers do not do, but lack the
finely-grained or smoother reactive motion. The fuzzy controllers of the type used in this thesis only
consider one obstacle at a time, so it is certainly advantageous to combine the controller with another
that takes into account secondary obstacles, and is able to help the fuzzy controller plan a path that
avoids local maxima traps (dead ends). A number of works were published during the course of
this thesis combining path-planning algorithms with fuzzy model. A series of works concentrated
on driving simulated road vehicles through traffic using fuzzy controllers, but combining custom
search algorithms for ensuring that paths were given for the vehicles to follow that obeyed all of
the relevant traffic rules [53, 54]. A hybrid was developed that used a fuzzy system that interpreted
3D distances and angles, and operated in a fully 3D all-terrain type environment. This controller
was merged with a path-planning controller that was able to break down the environment into a
topological map and compute a depth-limited A* Algorithm based path for the fuzzy controller
through the environment [55]. And numerous works investigated combining a fuzzy controller with
a genetic algorithm in order to give the controller a machine-learning capacity for optimising its own
rules [56–58].

An interesting development was the utilisation of a fuzzy controller as one behavioural “level of
detail” in a set of control systems used for controlling large crowds of animated pedestrians [13]. The
fuzzy controller was less computationally expensive than the motion algorithms which took multiple
moving obstacles and fixed geometry surfaces into account, so the idea was to use the geometric
controller for crowd members that were closest to the camera viewpoint, the fuzzy controller for
those in mid-view, and only a planned path for barely visible characters in the distance. In this way
a much larger size of crowd was able to be simulated in real-time whilst giving progressively more
realistic motion to characters occupying more space in the shot. Figure 3.4 depicts this level of detail
arrangement in action. The behavioural levels of detail were tied to a “unified” level of detail that
was based on perceptual experiments, and also governed animation levels of detail and graphical
complexity of the models. Thus the characters in the extreme distance are rendered as a series of
points, rather than as the convex meshes in close view.

16 CHAPTER 3. FUZZY LOGIC CONTROLLERS

Figure
3.4:

L
evels-of-detailbehaviour.T

he
characters

closestto
the

bottom
ofthe

shotare
being

driven
w

ith
a

com
prehensive,butcom

putationally
expensive

“geom
etric”

controller.T
here

is
a

static
group

of3
“conversationalists”

centre
shot,and

behind
them

a
very

large
group

ofcharacters
using

fuzzy
controllers

forreactive
m

otion.In
the

extrem
e

distance,visible
only

as
dots,are

characters
w

ith
no

reactive
behaviour,follow

ing
a

pre-com
puted

path.

Chapter 4

Assembling a Toolkit for Doing
Science with Simulations

4.1 Overview

Measuring data with simulations, in particular game-like real-time simulations, is highly subjective
and open to bias because the scientist typically develops the environment, the subject algorithms that
are measured, and also the measurement tools themselves. It therefore follows that it is necessary to
have a discussion of the apparatus used for creating the environments and measurement tools used
in this thesis. It is also interesting to add this sort of discussion as this information is not usually
found together in one place in the literature so is therefore also of value to other scientists developing
similar experimentation frameworks.

The computer scientist therefore needs to be careful to design an environment that creates a
suitably complex problem environment. This presents an unique problem to the computer scientist
because it is difficult to design both the problem domain, and the algorithm(s) to solve the problem
without introducing bias. There is no easy solution to this conundrum, it is very difficult to conduct
a fully objective study in these conditions. The best approach that can be taken is to document,
as much as is possible, the methods used and specifications of the created simulation, such that
it can be recreated or at least equated to similar simulated environments in use elsewhere. The
second step that can be taken is to introduce a level of data transparency into the simulation, that
is, to integrate a series of tools that allow relevant observations to made both during, and after the
simulation. It is often easier to appreciate the effectiveness of a particular motion controller once a
video has been captured or series of visualisations presented. Altogether then, the computer scientist
working with 3D simulations constructs a simulation from a variety of libraries and tools, creates
a framework within the simulation for conducting repeatable experiments, and crafts a series of
specialised visualisation and data collection tools. This chapter introduces the particular “toolkit”
that has been developed during the course of this thesis for doing computer science with complex
simulations.1

It would be most convenient if there were a constantly updated, standardised set of simulated
environments for evaluating motion controllers. Using a known framework would increase the com-
parability of measured results. Unfortunately, given the expanding range of motion control problems
it is difficult to find benchmarks to compare against. Research has been made towards establishing
a standardised evaluation framework for motion-control and steering problems typical to crowd-
simulation type problems [61, 62], however, the motion controllers evaluated in this thesis apply

1Material in this chapter draws on original works published as D. P. Playne, A. Gerdelan, A. Leist, C. J. Scogings, and
K. A. Hawick, “Simulation Modelling and Visualisation: Toolkits for Building Simulated Worlds,” Research Letters in the
Information and Mathematical Sciences, Massey University, vol. 12, pp. 2550, 2008. [59], and [60]

17

18 CHAPTER 4. ASSEMBLING A TOOLKIT FOR DOING SCIENCE WITH SIMULATIONS

to a range of characters with different types of constraints, and it does not make sense to evaluate
lane-following traffic scenario-by-scenario against pedestrians in a crowd; we end up with “apples-
to-pears” comparisons. The best we can do, therefore, is to develop a simulation that broadly repre-
sents the target problem domain for a particular controller, and develop some sensible metrics that
measure the performance of the controller in terms that are easily grasped by the reader. For exam-
ple; we might measure the performance of a race-car controller by measuring its lap times around a
fixed racetrack, and an urban traffic vehicle by its number of crashes over a fixed period, or perhaps
its overall fuel efficiency. In a stand-alone simulation this kind of observation is useful for investi-
gating the improvement of a particular motion controller over a previous configuration, or observing
change to performance as conditions in the environment change.

An absolutely essential task for showing that data taken from a simulation is robust, and that the
evaluation of a controller is in any way objective, is to provide measurements of uncertainty or error.
This is something that is done very poorly in the literature, thus it is imperative to mention here
how tools have been developed to ensure that environments are sufficiently varied, and that large
numbers of measurements have been repeated and how uncertainty is quantified for observations
from simulations.

4.2 Constructing a 3D Simulation

Simulations that mimic real world environments tend to involve a large number of different simula-
tion models, some of which interact with the others. A typical complex simulation will involve a 3D
terrain or urban environment simulation, using algorithms optimised for rendering the environment
efficiently whilst maintaining maximum graphical detail, a particle simulation engine for represent-
ing gases, dust, sprays of water, and other special effects, a method for animating human and animal
characters, possibly based on motion-captured acting, a method for moving those characters around
in the environment in a realistic manner, 3D audio models, mechanical simulations for representing
vehicle motion, a pipeline for creating, animating, adding variations to, and loading scale models
of physical objects into the simulation, and a physics or dynamics model for generating realistic
interactions between objects in the environment. Figure 4.1 gives an example of a typical complex
simulation combining several different models. In the figure a particle generation model is used for
the dust effect; this is a purely cosmetic system that does not affect the rest of the simulation. There
is also a 3D terrain mesh, which is optimised to display segments closer to the camera with a greater
density of polygons, and those further away with less detail. This mesh, although primarily visual,
has a fixed underlying shape which also interacts with the physics system; providing a platform for
vehicles to move on, as well as being able to deform, reacting to the impact of physical elements.
There are scale models of real vehicles, which have a physical-mechanical simulation which con-
strains their motion. There is an agent-based model for driving the vehicles, which uses a fuzzy logic
controller paradigm. The agent architecture used in this thesis is described separately in Chapter 5.
There are also trees represented on the landscape, which require a physical collision model as well,
and act as obstacles to the motion-controlled vehicles.

The kind of 3D environments that we are typical asked to move characters and vehicles through
are increasingly graphically realistic. Objects in 3D environments are often photo-realistic, and mod-
elled to scaled dimensions. Visual immersion and realism is an increasingly important psycho-visual
tool used in even scientific simulations, and especially those that lend themselves to the computer
animation and game industries. Figure 4.2 illustrates a method used in this toolkit for creating a
scale visual representation of a real vehicle. The entire process takes about 2 days of work per
vehicle-sized model for a moderate level of mesh detail. The key to scale recreation of a real vehicle
is to source either factory mechanical or model blueprints, and ideally a series of photographs cov-
ering most of the angles of a real vehicle. Using a variety of 3D modelling and image manipulation
software it is possible to recreate a vehicle to scale. Despite the end result being mostly cosmetic
or used for effective visualisation, the process is important to physical and mechanical simulation as

4.2. CONSTRUCTING A 3D SIMULATION 19

Figure 4.1: Real-world simulations often combine different visualisation models and simulated
systems. Combined in the simulation pictured here are a deforming 3D field terrain model, scale
models of vehicles developed from mechanical blueprints and photographs, and particle simulations
used for the dust effects in the top-right of the image.

the less detailed collision shape is fitted to the visual model. Not only this, but unknown mechanical
specifications such as strength of suspension springs can be adjusted until the physically simulated
model visually matches the 3D mesh shape, which has been developed from reference images and
diagrams. The process of creating a physical model for a vehicle in this manner is discussion in
Chapter 11.

Another type of complex 3D simulation is pictured in Figure 4.3. The figure shows us a screen
capture from the “Metropolis” project, which part of the work in this thesis went towards at Trinity
College Dublin, in Ireland. The characters pictured are animated by motion-captured animation.
The importance of this is to produce psycho-visually realistic motion. Figure 4.4 depicts the motion
capture process, and lab, used to create animations for the characters in Figure 4.3. In motion capture
animation, a real actor wears a dark-coloured costume covered with balls made of highly reflective
material. These are positioned on joints and other key locations around the body. A ring of infra-
red cameras surrounds the actor, recording the location of all of the reflective markers. This sort of
motion-captured animation has been used to drive a body of perceptual research which quantifies
limits to believability; up to what distance from the camera viewpoint that characters motions need
to be motion-driven to remain perceptually convincing, the percentage of a crowd that needs to have
unique actors’ motions to retain a perception of variation, and if each animated character model can
be driven be an actor of either sex [12, 63–67].

Most realistic terrain in 3D simulations is now generated by fractal modellers, which provide
pseudo-realistic terrain but allow very little design control to scenario designers. The terrain illus-
trated in Figure 4.5, is however based on a novel method developed for several of the experiments
in this thesis. The terrain is visually created in 3D by hand, in real time, from within the simulation
itself, with a variety of WYSIWYG (“what you see is what you get”) tools that are built into the
simulator. This work is based on the ETM2 (”Editable Terrain Manager”) for the Object-Oriented
Graphics Rendering Engine (Ogre) graphics library [68], which adds the advantage of allowing sim-
ulated elements in event driven models to deform the landscape during simulation according to the
physics model. The real-time optimally adapting mesh (ROAM) algorithm has been used with the
terrain [69] to display the environment efficiently. A series of tools are integrated for quickly laying
individual obstacle-type elements on the terrain, are distributing large “forests” of obstacles. Indi-

20 CHAPTER 4. ASSEMBLING A TOOLKIT FOR DOING SCIENCE WITH SIMULATIONS

Figure
4.2:

Partofthe
sim

ulation
toolkitis

a
m

ethod
forreproducing

scale
m

odels
ofrealvehicles.H

ere
reproduced

factory
blueprints

are
sourced

(a),w
hich

w
ere

segm
ented

into
a

variety
of

front-profile-rear-top
view

s
and

adjusted
to

scale.
T

hese
im

ages
then

becom
e

the
backgrounds

for
the

sam
e

projections
in

a
3D

m
odelling

softw
are.

W
ire-fram

es
w

ere
then

constructed
overthe

top
ofthe

blueprints;producing
a

scale
m

esh.
T

his
m

esh
is

populated
w

ith
triangular

polygons
to

create
a

solid
object(e).U

sing
know

n
specifications

forthe
vehicle,the

dim
ensions

ofthe
3D

objected
w

ere
adjusted

(blueprints
are

som
etim

es
inconsistent).

Som
e

artistic
licence

is
necessary

to
fill

in
gaps.

A
fter

taking
or

sourcing
photographs,

these
are

then
skew

ed
and

cropped
to

produce
flat

surfaces
(b)-(d).

A
texture

bitm
ap

is
then

created
using

as
m

uch
photographic

base
as

possible,and
finally

applied
to

the
solid

objectby
skew

ing
various

view
s

ofthe
object’s

polygons
overthe

texture;a
usertool-driven

process
thatm

aps
the

texture
to

the
polygon

surfaces.

4.2. CONSTRUCTING A 3D SIMULATION 21

Fi
gu

re
4.

3:
T

he
ch

ar
ac

te
rs

in
th

is
cr

ow
d

ar
e

be
in

g
an

im
at

ed
by

m
ot

io
n-

ca
pt

ur
ed

ac
tin

g.
T

he
ra

ng
e

of
re

co
rd

ed
m

ot
io

ns
ca

n
to

so
m

e
ex

te
nt

be
in

te
rp

ol
at

ed
to

fo
rm

a
ra

ng
e

of
di

ff
er

en
ti

nt
er

m
ed

ia
te

w
al

k
sp

ee
ds

,b
ut

th
er

e
ar

e
ha

rd
co

ns
tr

ai
nt

s
ap

pl
ie

d
th

at
m

us
tb

e
re

sp
ec

te
d

by
m

ov
em

en
tc

on
tr

ol
le

rs
,w

hi
ch

pr
es

en
ts

a
co

ns
id

er
ab

le
ch

al
le

ng
e

to
m

ot
io

n
co

nt
ro

lle
rs

.
T

he
nu

m
be

r
of

di
ff

er
en

t
se

ts
of

m
ot

io
ns

(t
ur

ni
ng

,
w

al
ki

ng
at

di
ff

er
en

t
sp

ee
ds

,
et

c.
)

fr
om

di
ff

er
en

t
ac

to
rs

re
qu

ir
ed

to
m

ai
nt

ai
n

th
e

pe
rc

ep
tio

n
of

va
ri

at
io

n
is

de
te

rm
in

ed
by

pe
rc

ep
tu

al
re

se
ar

ch
.

22 CHAPTER 4. ASSEMBLING A TOOLKIT FOR DOING SCIENCE WITH SIMULATIONS

Figure 4.4: An actor (the author), covered in reflective markers, is being captured by a ring of
infra-red cameras. The cameras shine highly intense infra-red light onto the actor from a variety of
angles. Five cameras are visible in the figure. A 3D positioning algorithm is used to map the relative
positions of the markers from each camera into a consolidated 3D skeleton; effectively recording the
3D motion of the actor. This can then be mapped onto joint positions, at equivalent locations to the
markers, to animate a variety of 3D models. The floor has lines of tape to guide the actor through
pre-set walks and motions. The researchers using the terminals in the background are visualising
the mapping of markers onto a 3D skeleton, and are recording each animation sequence.This motion
capture session was used to record some of the motions for the characters in Figure 4.4.

4.3. A DELTA-STATE VIDEO CAPTURE TOOL 23

vidual elements can be selected and manually repositioned using keyboard and 3D mouse picking.
This tool allows rapid construction of a large variety of different 3D environments that can be used
for running experiments. For simulations that are used for experiments it is exceedingly useful for
the computer scientist to have either a rapid scenario design tool at hand, such as the terrain creation
system in the figure which can create a new simulation scenario in minutes, or to work off a larger
simulation project as a research platform, such as the Metropolis simulation.

Figure 4.5: User-assisted dynamic landscape generation. Pictured is a real-time tool for deforming
a 3D landscape into a desired experiment scenario by using the mouse to “drag” hills up and valleys
down. The diameter and shape of depressions and hills is adjusted via the user-interface buttons. The
tool can also place, rotate, and adjust environment elements and obstacles onto the landscape, and
generate large randomised arrangements of obstacles to quickly create scenarios for motion-control
experiments.

Combined visualisations can be quickly constructed by assembling an effective toolkit of dif-
ferent libraries and modules. There are now a huge variety of freely available open-source tools,
libraries and high-level wrappers that offer very sophisticated visualisation technology. It is no
longer the task of simulation builders to develop visualisation techniques for their simulations from
the ground up, but rather to assemble a collection of these libraries and other resources that best suit
the nature of their particular simulation project.

4.3 A Delta-State Video Capture Tool
One of the difficulties with research using 3D graphical simulations is presenting results to peers. It
is always useful to be able to show recorded videos of selected results as recorded video clips. This
considerably helps an audience appreciate both the problem at hand and understand how quantified
performance results relate to actual paths of motion. A number of software tools exist for recording
video and audio streams by reading either output of OpenGL, Direct3D, or final information written

24 CHAPTER 4. ASSEMBLING A TOOLKIT FOR DOING SCIENCE WITH SIMULATIONS

to screen. Unfortunately these tools, if set to record at any sort of reasonable quality, draw a large
amount of system resources (both memory and CPU) as they tend to save entire rasterised screen
dumps (whole images) into memory during the recording process, which effectively reduces the
speed at which the simulation can run. Real-time simulations that are slowed down start processing
with larger time steps. If all the underlying simulation models do not use fixed-sized chunks of
time for processing then the simulation itself is affected; most often this means that calculations for
movement create different results for curved paths of motion. Slowing the simulation down also
means that, even if the time steps are divided robustly, it may no longer be user active; meaning
that the camera can not be manually panned around to capture the intended video. A much better
solution is to build a video recorder into the simulation itself. Most rendering libraries have a “render
to texture” function that captures the final screen projection after all 3D matrix manipulations and
transformations have been calculated on hardware, and stores the image in memory in a bitmap
format. Of course, doing this in real time, we run into the same problem. The solution devised for
the work in this thesis was to build a “delta state” recorder into the simulation.

The delta state recorder, when activated, sits in-between the graphics library itself, and the in-
terface (graphics wrapper code) in the simulation. Every time that a graphics function is called by
the simulation to the wrapper code i.e. moving a scene node, rotating a graphical element, show-
ing or hiding objects, or changing on-screen text then the delta recorder stores the unique ID of the
element changed, the new values (parameters) given to the graphics library function, and the type
of change or name of the function. This state information is all stored in a memory-optimised data
structure. The data structure is added to the end of a queue of recorded delta states, and stamped
with the simulation time that the change of state occurred. Only graphical changes to simulation
state are recorded. The simulation proceeds as normal, with negligible resources used to record a
list of graphical changes. When the recording process is told to stop the simulation is completely
stopped (physics and audio are stopped etc.). The delta state queue is played back in reverse, and
a render-to-texture image is saved at a regular time interval (any frequency can be used). A video
assembly tool such as “mencoder” is then used to transform all of the output images into an MPEG
video file. The advantages of this tool are that it is easy to code, can record as little or as much
graphical information as is desired (for example it could be created to not record displayed user
interface text or mouse cursors), does not disrupt the simulation during run time, and can output to
any level of image quality and frequency.

4.4 Real-Time Data Plots and Time Tools

Another tool of use to the computer science is a real-time data visualisation tool that can overlay plots
or graphs onto the display during simulation. It is trivial to display text output to the screen, which
is useful up to a point, and to some extent collected data can be piped out to external programmes
during run-time or analysed after a simulation has finished. There are, however, elements in motion
control that are notoriously hard to debug after a simulation has finished, or by using a pre-built
tool. These occasions call for creation of a custom visualisation tool. Fuzzy motion controllers
use fuzzy set classification to determine the input to decision-making “fuzzy inference” tables. If
this classification can be displayed in real time then we have some insight into why unusual motion
behaviours might be occurring, rather than treating the system as a “black box”. It was incredibly
helpful to display a whole panel of custom-made graphs to the screen during experiments. Much
of this decision making process happens too quickly to see what is happening, so it was useful
to build in a “pause” button that was able to interrupt the time model so that the graphs could be
analysed. This meant building a second simulation timer that kept the graphics running whilst the
rest of the simulation stopped. Figure 4.6 shows us the graph overlay panel. A variety of different
graphs are used here, including scrolling “CPU monitor” type graphs that are watching the vehicle’s
intended output values for velocity and steering, and a scaling-to-fit graph that is recording a figure
representing the number and severity of collisions so far. But most interesting are the fuzzy set

4.5. MEASUREMENTS OF UNCERTAINTY 25

classification graphs, which allow us to see inside the decision making process of the controller. The
horizontal position of the green vertical needle on each graph shows the value of the input to the
controller. This also shows which set or sets that it is being classified into. The intersection with the
set function lines shows us the membership value. In real-time, armed with this overlay panel, we
can now observe how quickly the transition between sets occurs, and if indeed the shape and scale
of the input sets effectively represents the range of the input variable. If we pause the simulation
at a problem point (e.g. when the vehicle starts to crash), then we can follow the decision-making
process through and work out why the vehicle is not avoiding the collision at that point in time. The
fuzzy classification process will be explained in detail in the next chapter.

4.5 Measurements of Uncertainty
After building a simulation for running experiments, and developing some tools for recording and
visualising results, then the next task is to set up a framework for plotting relevant results with
measurements of error or uncertainty. Results can be collected in a fairly straight-forward manner
by appending performance data to a text file at regular intervals (i.e. after a simulation run has
finished). Throughout this thesis we have used standard error to quantify uncertainty in results,
although a standard deviation measurement could also have been used. This process can only be
done after a simulation has completed a number of experiment runs.

26 CHAPTER 4. ASSEMBLING A TOOLKIT FOR DOING SCIENCE WITH SIMULATIONS

Figure
4.6:

T
he

graph
overlay

is
custom

builtfor
fuzzy

m
otion

controller
visualisation

in
real-tim

e.
T

he
top

4
w

indow
s

in
the

panelare
classifying

4
crisp

input
values

(distances
and

angles)
of

a
vehicle

into
fuzzy

sets.
T

he
green

vertical
needle

on
each

graph
gives

the
crisp

value
on

the
x-axis,

and
its

set
m

em
bership

values
on

the
y-axis.

T
he

next2
panels

are
w

atching
the

desired
velocity

and
steering

outputof
the

fuzzy
controllers,and

the
bottom

panelis
collecting

collision
heuristics.

Chapter 5

A Modular Agent Middleware

5.1 Introduction
Many modern artificial intelligence (AI) systems, including both real physical robots and animat-
based models are structured using intelligent agents. A key challenge for building large and complex
AI systems is to manage the agent interactions in an appropriate architecture that supports complex-
ity in a scalable and hierarchical manner. In this chapter various agent architectures for both physical
and simulated robot systems are reviewed, and show how appropriate agent communications proto-
cols can be developed to support artificially intelligent systems based on communities of interacting
agents.

As well as reviewing some of the architectures and supporting software tools and technologies,
ideas for a software architecture for managing intelligent agents are introduced. The importance of
being able to incrementally augment the set of agents as new ideas are developed is emphasised.
This chapter describes how key activities such as agent navigation in physical and simulated spaces;
agent communication; world state management and sensory integration all need to be managed in an
appropriate framework to support individual agents that will take responsibility for tasks and goals.1

Middleware is a software layer that sits between top-level applications and the operating system
in distributed computing systems. Although the use of intelligent agents has expanded to operation
in a huge variety of environments, many of the difficult but interesting problems of agent behaviour
remain the same, and it becomes convenient to locate the programmed model in a smart middleware.

Whilst there are an increasing number of highly specialised jobs or scenarios for which coop-
erating intelligent agents are being designed, emerging from these specialised applications it can
be observes that the processes and core software architecture required by these agents is often very
similar. Indeed it has been found from previous works that these have often repeated nearly iden-
tically the foundation work behind agents developed for a variety of different environments; both
simulated and robotic [13, 46, 53, 58, 71]. Figure 5.1 illustrates some of these different agent cases
from works related to this thesis. In segment (a) an agent that has been developed for this drives
a mechanically simulated vehicle. This agent has to operate brakes, accelerator, gear transitions,
and steering to move itself optimally around a physically simulated evaluation course. Segment (b)
in the figure gives us an example from a video game environment; here a typical computer game
enemy is agent-driven and must pursue the game player’s character and attack it. In this case the
intelligence capacity is very limited but the agent must know how to move the zombie character
in a cartoon-like manner that suits the game style, as well as presenting a predetermined level of
challenge to the player and deciding when to give up the chase behaviour state when the player is
too far away. Segment (c) shows an interesting scenario. Here each vehicle has been imbued with

1Material in this chapter expands original research first published as K. A. Hawick and A. Gerdelan, “Software Integration
Architectures for Agents,” Tech. Rep. CSTN-054, Complexity., Institute of Information and Mathematical Sciences, Massey
University, Albany, New Zealand, May 2008 [70].

27

28 CHAPTER 5. A MODULAR AGENT MIDDLEWARE

Figure 5.1: Agents being used to (a) drive a mechanically simulated vehicle with physical con-
straints, (b) “personify” a video game zombie enemy that hunts a human player, (c) simulate road
traffic with multiple autonomous agent-driven vehicles that obey road rules and traffic signals, and
(d) determine dynamic path-finding for real soccer robots’ agents through a simulation. Although
the tasks differ in each case, the architectural requirements of each agent are almost identical.

5.1. INTRODUCTION 29

an agent that is similar to the car-driver from the first segment, but these agents have to cooperate as
they must obey the rules of the road, which requires a different decision-making behaviour that af-
fects navigation. As in other traffic simulations, these car agents focus on a following distance-type
behaviour (a distance to maintain behind the vehicle ahead of it), which requires a unique behaviour.
In this case the perceptual inputs to the agent are different; in addition to obstacle and destination
information the agents are also given some information about the state of their current road lane
(for maintaining following distances etc.), and of the intersections ahead such as the current state of
red-amber-green signals. Segment (d) shows us a still from a robot soccer simulation. In this case
an agent that combined a fuzzy-logic-based reactive motion controller with a dynamic path-planner
was being developed. Here the red-shaded robot is reconfiguring its path through a large number of
robots from the opposing team. The points along the path are designed to avoid the front-sides or
most likely trajectories of the opposing robots. The robots themselves were real-world remote con-
trolled cars, but the figure displays a visualisation from a real-time sand-box simulation environment
in which the algorithms and agent architectures were developed before applying them to the real
robots. Much of this work was published [46–48] and has been a background foundation of work
for this chapter, as it was discovered there that the simulated game-like agents were mutually com-
patible with the complete real-world robot architecture, despite the real machines having additional
requirements such as radio communication frameworks and computer vision inputs. In fact, it was
advantageous to have a common architecture in different applications, as the new algorithms that
were developed in the simulation could be simply plugged-in to the real robots. This is a huge time-
saver in terms of development speed as it reduces the size of jobs between experiment iterations.
This advantage can of course be extended to the next higher level; a common agent architecture as
a middleware package that can be reused for various different types of agents allows us to simply
build plug-in modules that represent more specialised agent behaviours, rather than to re-invent the
wheel and spend this development time on development of infrastructure or porting of code between
different architectures.

Experiments with agents in simulations, robot soccer, games, and other applications make use
of agents; the requirements of which converge towards a similar model; large numbers of relatively
simple agents that operate autonomously within their environment. More complex functionality is
then either emergent (such as traffic flow patterns) or is directed by higher-level agents or humans (as
in the case of games and robot soccer). Some of these low-level agents are intended to cooperate in a
swarm arrangement, or compete with hostile or predatory agents, but all have a number of elements
in common:

• A short-sighted perception of the surrounding environment

• An evaluation system to decide which action to take next

• Navigation functionality (a system that decides where to move)

• An ability to record a simple history of past actions

• A framework for interacting with other agents

Other types of agents such as natural language processors may have a radically different modus
operandi, and require a specialised architecture, but for systems that employ agents in an au-
tonomous or mobile context a new architecture is proposed; with an agent middleware to handle
integration or communication between the common agent elements as listed above. This middle-
ware is to be constructed in a modular fashion; where the elements of agent functionality can be
swapped in or out, redefined, or extended to better suit the agent. This architectural approach should
then be flexible enough to cope with a variety of heterogeneous agents within a common framework,
and as will be shown this chapter, even lends itself to more complex or distributed agents.

30 CHAPTER 5. A MODULAR AGENT MIDDLEWARE

5.2 Agent Society Model

Figure 5.2: In this society of agents there are multiple levels of coordinating meta-agents. Each level
of agent works at a different order of task planning; mobile agents simply move reactively from A
to B as dictated by their coordinating agent, and send back locations of environment features to the
coordinator so that it can populate its planning map. The higher-level coordinating agent is present
to indicate the scalable nature of the hierarchy; it can have several medium-level coordinating agents
to which it can issue movement instructions to whole groups.

Figure 5.2 illustrates the model for inter-agent cooperation and communication on which the
agent architecture is based. Whilst recent research has looked at the possibility of peer-to-peer type
communication models for agents [72,73], it has been discussed that a society of cooperating agents
based around a military-style hierarchy, or team captain in the case of robot soccer, is convenient for
adversarial games [74]. The bottom-level mobile agents are relatively non-complex, with mostly re-
active behavioural intelligence capability, but act as eyes and ears for a coordinating agent to which
they send asynchronous reports. This coordinating or higher-level agent processes environment in-
formation reported from its agents, and from a more complex model of the environment makes more
complex forward-thinking plans relating to a common goal, and then sends missions to the agents
under its umbrella in order to achieve best results through cooperative actions; goals which otherwise
might not serve the highest interests of the individual agents. Because many multi-agent systems are
constrained to an individual machine with limited cycles available for inter-agent communication
and cooperation, the hierarchical model of communication also makes much more efficient use of
resources for these systems. This kind of organisation is suitable for most multi-agent applications,
including of course adversarial computer games, robot exploration, and robot soccer.

A less obvious example of where this particular arrangement can be advantageous is to traffic
simulations. With this hierarchy we can give vehicle-driving agents only a very simple agent system
that moves the cars towards their next free point along the road lane. A coordinating agent was
embedded in each road lane, which is then able to take ownership of all of the cars entering the lane.
The road lane agent knows the rules of that particular road and intersection set, including the state of
the traffic signals, and if other systems such as pedestrians have walked onto or otherwise interacted
with the road. The coordinating agent also collects the positions and other relevant information
from each car on its road. With this information the road itself is able to build a small map, and

5.2. AGENT SOCIETY MODEL 31

Fi
gu

re
5.

3:
A

co
or

di
na

tin
g

ag
en

te
m

be
dd

ed
in

th
e

ro
ad

ha
s

pl
an

ne
d

a
pa

th
(y

el
lo

w
lin

e)
fo

rt
he

bu
s

ba
se

d
on

its
ab

st
ra

ct
re

pr
es

en
ta

tio
n

of
th

e
ro

ad
;a

lin
ke

d
lis

to
fs

eg
m

en
ta

lo
ng

th
e

ro
ad

an
d

th
e

oc
cu

pa
nc

y
an

d
st

at
e

of
ea

ch
se

gm
en

t.
T

he
ov

er
la

y
sh

ow
s

th
e

bu
s’

ag
en

th
an

dl
in

g
sm

oo
th

st
ee

ri
ng

an
d

th
at

it
is

w
at

ch
in

g
th

e
ne

ar
es

tm
ov

in
g

ob
st

ac
le

(r
ed

lin
e

po
in

tin
g

to
th

e
ca

r)
sh

ou
ld

it
ne

ed
to

re
ac

tt
o

av
oi

d
co

lli
di

ng
w

ith
it.

32 CHAPTER 5. A MODULAR AGENT MIDDLEWARE

plan an effective path for each car, including following distances, stopping targets, lane changes,
and intersection instructions. Most of the more complex tasks can be taken away from the moving
agents and moved to a higher level. This allows us to build very simple car-driving agents that
concentrate only on the controls of the car itself in respect to its planned course as given by the
coordinating agent. The coordinating agents, in turn, are very simple functionaries, and treat each
subordinate agent as a simple actuator and sensor set. Planning at the level of each agent can be very
abstract and simplified - in the case of the road-embedded agents a linked list of nodes was used,
representing regular intervals along the span of each road.

5.3 Modular Architecture
Most agent architectures are based on the traditional “stack” model, as in Figure 5.4, where input
arrives at the top of the stack, and modules are arranged in order of abstraction from top to bot-
tom; with higher-level planning behaviours preceding lower-level reactive behaviours and finally the
actions, which in this case are instructions sent to the motors.

Figure 5.4: This is a typical “stack” architecture with processing in a linear order from input to
output with higher-level behaviours preceding lower level actions. This particular model was first
used in previous robot soccer work [46], and has to some extend inspired the modular middleware
used in this thesis.

Our concept for the role of an agent middleware for the agents is illustrated in Figure 5.5. Some
of the key tasks common to the agents has been identified, which have been included as tasks that
will be handled by agent middleware. Each agent that is created will always require agent-specific

5.3. MODULAR ARCHITECTURE 33

modules for interfacing with the unique actuators and sensors of that agent; software or hardware. It
is possible for these calibration and control modules to be separated from the core of the agent, and
communicate to an agent middleware via a common interface and communication protocol. It is not
necessary to build a completely new agent architecture from scratch simply because one agent must
operate physical motors as actuators, and another that employs the same algorithms exists only in a
simulated environment.

Figure 5.5: The role of middleware for agents. The actuators (output) will almost always be cus-
tomised control modules, specific to each agent type, and similarly, sensor input modules will be
specialised, but the large box contains a list of agent functions that are common across many types
of agent. The idea is to group these functions together in a middleware layer that communicates via
a common interface with decoupled sensor and actuator modules.

A progression of the agent middleware concept in this architecture is a move to modular mid-
dleware. Separating the functional components of this agent middleware into modules, as illustrated
in Figure 5.6 allows us a much greater degree of flexibility in design, which is particularly use-
ful for developing agents middleware that can be applied to various types of agent with differing
functional requirements. With reference to the figure, we can consider a bus-driving agent in this
traffic simulation. In this case we would write software components to determine the most likely
collisions from a list of nearby vehicles and static obstacles, which replaces the LASER and camera
modules and hardware in the figure. The information that we would collect would be a list of the
most important 3D positions, shapes and sizes; sent to the middleware’s “Environment Processing”
module. We would also need functionality for receiving path-planning instructions from the road
coordinating agent which would be sent to the “Mission Control” middleware module. After this
perceptive stage we would need to use the action-selection “Decision Making Matrix” to determine
which behaviour to use next; steering for collision avoidance or to head for the next point on the
planned road route. Some of the intelligent agents are designed to learn or record a performance
result as part of a genetic algorithm; these would also use the “Self Assessment” module, but this
traffic simulation is unlikely to need this in normal operation so we can unplug this module from the

34 CHAPTER 5. A MODULAR AGENT MIDDLEWARE

middleware. There is a “reporting” module, which in this case is going to tell the road coordinating
agent which position on its road that is currently occupied so that it can update its planning maps.
This will be a class-to-class software message in this simulation so we will write a message passing
function to replace the output “Wireless Module” in the figure. The figure has a full navigation stack
of modules. In the case of the bus the top level module is done by the road agent, so the coordinating
agent will run this module for all its car agents, so that the bus can unplug this module and rather use
the next one - the low level navigation module to compute finely-detailed steering and acceleration
controls to either loosely follow, or to override its planned path and react to an immediate obstacle.
The “Actuator Mapping” module is simply a method for converting or whatever symbolic output is
given by the steering module, which we expect to be abstracted in terms of “steer left 60% and slow
down 100%”, into sensible instructions to send to specific actuators. In the case of the bus-driving
agent this would mean decomposing “slow down 100%” into “set accelerator pedal to 0”, and “set
brake pedal to 1”.

Figure 5.6: This is a fully extended model of the main modular components of this architecture
as applied to a physical robot. The sensors and actuators (antennae, LASER, motors, etc.) have
custom controllers and drivers, which of course would be completely different for a computer game
character. Inside the middleware layer there are a variety of processing, action-selection, navigation,
and communication modules, which can be reduced or added to depending on the type of agent.

Within main-loop style agent control programmes the tradition has been for all the different
functional components of an agent to be computed once per frame. This model is not an efficient
use of resources, as some of the typical agent modules such as long-term path planning do not need
to be re-computed in every processing frame. If the modules of the agent middleware are created in
an asynchronous, event-driven fashion then they can re-calculate on independent terms, and update
their linked modules only when new input data has arrived, or according to a different throttling
rate for each module. An asynchronous module design with common interfaces allows us to spread
calculation load over many processing cycles.

A modular architecture also allows the designer of an agent to replace any of the modules with
some of the designer’s own code, or with a module from another agent. With an object-oriented
implementation the designer should even be able to extend or override the core functionality of a
module to add some more specialised functionality to the agent.

This semi-independent modular approach also gives us the freedom to distribute the agent mid-
dleware over several threads or multiple CPU cores, or by logical extension to distribute the mid-
dleware for a single agent over geographically separated machines as agents become more resource-
hungry or require greater internal redundancy. This, of course depends in the implementation. In
this thesis most of the applications contain large numbers of agents being simulated on one machine,

5.4. MODELLING THE ENVIRONMENT 35

so the benefits of distributed computing diminish.
The architecture that has been designed here is scalable in two senses; firstly, the modular nature

of the agents allows upgrade or downgrade in complexity. Because the modules themselves can be
constructed to communicate asynchronously, through a common interface, this architecture allows
entirely new modules to be included within the architecture. An example of where this approach
is most useful is the navigation stack of autonomous agents; which can typically comprise several
different systems for long distance map-based planning, short distance path-finding, reactive obstacle
avoidance and target seeking, and several levels of interface with actuators. The number of systems
in the stack is largely up to the designer of the system, and it is definitely beneficial to offer this kind
of flexibility to designers of agents, or to allow agents with different levels of navigation complexity
to operate under the same architecture.

Secondly, the society of these agents itself is scalable; if there are large numbers of agents then
coordinating agents can be stacked in a hierarchy - coordinating agents control a group of agents
as actuators, and report to a higher-level coordinator as its sensors (see Figure 5.2). Each level of
coordinating agent deals with a model of the environment at a different resolution and sends and
receives information at a different level of abstraction. Each agents knows only about the agents
directly above and below it in the hierarchy. This model minimises conflict between cooperating
agents as it scales in size as agents at each level can be given missions that avoid competition (or
collision) by the level above.

5.4 Modelling the Environment
The perceived world is plotted on a 2D map which is divided into map references or cells. All
elements of the environment in the agent’s word model are then said to occupy a discrete map
reference, rather than an in-exact position expressed in floating point or real numbers. There are
several advantages to this approach:

• The world model can be stored in 2D arrays.

• Reduced error when communicating positions.

• Ease of computation for common algorithms.

• Ease of pattern identification.

A 2D map is a very simple tool for communication - it is usually not necessary for agents to
communicate very accurate world information; high-precision information is usually only required
for very low-level planning. Using integers to express positions as discrete map cell values is also
very convenient for communication over a broad range of network implementations, as they are
guaranteed to be exact.

The resolution of the map is obviously important; lower resolution maps are easier for planning,
but are at risk of losing important or subtle data. Maps of higher resolution contain more information
but are at risk of bogging down algorithms with unnecessary information, over-sensitive grid posi-
tions for moving objects and exponentially expanded search domains. Previous experiments have
shown that an ideal map cell size was roughly 150% of agent size for Robot Soccer agents requiring
very accurate navigation [46].

A key advantage of using a world model as simple as this is that the thoroughly tested and proven
algorithms of computer science can be applied to good effect. The A* Algorithm or other real-time
adaptations and hybrids can be used for very effective path planning. Common pattern identification
and image recognition algorithms can be applied to the map for use in higher-level AI. At any
time the map can be quickly transmitted as a human-recognisable image. Lossless compression
algorithms can even be applied to the world models in the same way as they would an image, for
more efficient transfer of very large or detailed world maps.

36 CHAPTER 5. A MODULAR AGENT MIDDLEWARE

Figure 5.7: A typical Wumpus-style world model. The 3D environment can be abstracted into a
2D map as here, which allows powerful search algorithms to solve complex problems such as path-
finding in a simplified environment. These kind of maps can be kept in 3D arrays, where detected
environments elements can be stored, represented here by different characters, and time-stamped so
to allow for information decay in stochastic environments, as depicted in the corner of those cells.
Various cells have been shaded out of the image as a wall (black line) has been discovered. We can
see that normally this kind of obstacle shape, which has local maxima traps, would be a problem
for motion controllers, but degraded into squares it becomes a trivial path-finding problem for an
algorithm such as A*.

5.4. MODELLING THE ENVIRONMENT 37

Figure 5.7, which will be explained in detail shortly, shows the similarity between this sort of
world model and the famous Wumpus [75] problem. The aim is to take what may be very complex
3D world information from the agent’s sensor modules and convert this into a very simple view
of the world - in much the same way as humans would - the complex problem is simplified or
abstracted, then the simple (abstract) problem is solved, and applied back to the complex domain.
Agent planning is done using this simplified and abstract model of the world, making high level
plans such as “from our position move around this map cell to get to destination map cell” which are
then interpreted by an intermediate control module into low-level complex outputs which can be fed
to actuator control modules.

The main requirement in order to harvest this sort of high-level planning ability is a system
for converting to and from complex and map coordinates. This system depends on the type of
environment that the agent is operating in; systems have already been developed for robots operating
in the physical world for exactly this sort of mapping and planning. Carnegie Mellon University’s
Lunar Rover gives us a very good example of this sort of system; and provides details for a stereo-
vision camera system to identify positional information of terrain features, and plot them on a similar
type of map for later use as a navigational aid [76]. Simulated agents may already operate in this
sort of cell-based environment, but those that operate in a more complex 3D space simply require a
system for agreeing on map cell placement, which was developed in earlier work [46].

In reference to Figure 5.7, we can consider the agent marked ’A’ at map index (E, 10). The super-
script in the top left corner of the cell indicates that this information was last updated 2 seconds ago,
which shows us that we can actually store several layers of useful information in each cell, and also
indicates that this sort of planning is useful in a dynamic and uncertain or stochastic environment;
world model information can be date stamped, which can assist high-level planning modules in the
assessment of certainty or out-of-date information. This type of information is useful in identifying
a pattern of nearby hostile agents as being actually only one or two moving agents that have been
reported multiple times, or indicating if a segment of the environment containing dynamic obstacles
will no longer be reliable for path planning. Again in the figure, the agent has been informed of,
or spotted first-hand, various other environment elements with their own date stamp. Each of these
elements has been categorised with a different letter; this kind of very simple discrimination is useful
for fast-paced decision making such as real-time path planning, assessing danger levels, or roughly
categorising the possible speed of dynamic obstacles. A large segment of the map is also shaded out
completely - a wall has been discovered and all of the cells that it covers or mostly covers have been
removed from the navigation search domain. This is a blanket decision, but will reduce the load on
long-range path finding. Lower-level navigation behaviour may actually move the agent through the
parts of these map cells that are not impeded if necessary. We can see that in this way the complexity
of the simulated world has been drastically reduced into a model not dissimilar from the world of the
Wumpus, and for good reason - the powerful algorithms that have been developed for Wumpus-like
problems can then be applied to complex domains.

In the all-terrain simulation pictured in Figure 5.8 the coordinating agents built a 2D grid-based
map, represented as an array of characters, which was filled in with characters representing relevant
obstacle positions as the mobile agents discovered them. Despite the coordinating agent treating the
system as a tile-based environment, the lowest-level agents are able to steer smoothly through 360
degrees with freedom. An advantage of this approach is that vehicles of a larger size and shape were
able to be coordinated in tandem with the smaller characters by utilising coordinating agent maps of
different configurations. Another advantage used in this implementation is that several layers of 2D
planning map can be used; a map of obstacle locations, a map of potential goal locations, and a map
of different heights of terrain as weighted numbers to use in planning movement; all of which can
be built as the mobile agents gather more information.

38 CHAPTER 5. A MODULAR AGENT MIDDLEWARE

Figure
5.8:

H
ere

w
e

can
see

large
groups

of
characters

w
hich

are
controlled

by
a

3-level
hierarchy.

M
obile

agents
steer

reactively,
but

loosely
follow

a
path

(show
n

as
a

yellow
line)

planned
by

a
team

-coordinating
agent.

T
he

coordinating
agentuses

a
2D

cell-based
overhead

m
ap

to
plan

this
path,show

n
as

high-resolution
black

grid
overlay.

L
arger

groups
of

agents
are

directed
by

issuing
m

ore
abstractgeneralpaths

to
coordinators

w
ith

the
low

er-resolution
green

grid.

5.5. AGENT BEHAVIOUR 39

5.5 Agent Behaviour

An agent navigation system within this architecture typically starts operation on the agent’s 2D world
map. High-level algorithms such as A* Algorithm or modifications such as Hybrid Evasive Fuzzy
A* [47], Dynamic A* [77] (D* Algorithm) or other search algorithms can compute useful long-
distance or mid-range real-time planning information here, based on combined heuristics assembled
from various layers of the Wumpus-style environment maps. The Fuzzy A* algorithm can go so
far as to generate forward-thinking probabilistic regions of undesirability, and factor these into a
balanced path-finding algorithm, so that mobile agents can take a shortest path, except avoiding
areas that are quite likely to be undesirable, for example a tear-drop or wave-crest shaped region
surrounding an approaching heavy vehicle. An example of this algorithm in simulation is depicted
in Figure 5.9, which gives us a way of visualising this extra dimension of information in each cell.
In the figure the navigating robot will choose the most overall downward-sloping path through the
graph, which is effectively a balance between the optimal path according to terrain, with a weighted
consideration given to other environment features such as the trajectories of other vehicles.

Figure 5.9: This graph visualises an example of the the Fuzzy-A* algorithm in action. The height
of the graph points represents the cost of movement in that area - which is a weighted balance of
distance to final destination, terrain movement cost, and trajectories of other vehicles. The algorithm
will then choose the most overall downward-sloping path to the destination.

Because the navigation systems that are examined in this thesis generally operate dynamically in
real-time, generally only the next way-point in the planned path is fed down from the planning layer
to the next layer in a navigation stack. That next layer takes care of more subtle details, but attempts
to direct the agent’s motion as efficiently as possible, towards the next way-point. In the case of the
Fuzzy A* algorithm, this next layer is more complex; and actually computes a Fuzzy Logic-based

40 CHAPTER 5. A MODULAR AGENT MIDDLEWARE

reactive obstacle avoidance steering and acceleration system combined with a Fuzzy Logic-based
target seeking system. This kind of control gives the agent a reactive navigation layer, and can quite
sensibly control analogue mechanical actuator systems. Subsequent modules in the navigation stack
would then be required to translate the generalised steering and acceleration outputs into specific
motor instructions.

The key function of an intelligent agent is the decision-making or action-selection process; how
the agent maps its goals to actions. Non-complex agents such as animats [28] are typically provided
with a list of possible actions, and either a procedural or heuristic method for ranking these actions
in order of priority based on information held about the current state of the environment, and any
other information held by the agent. This model should be acceptable for simple agents, such as the
mobile or bottom-level agents in the society hierarchy.

Higher-level coordinating agents deal with a large database of different types of information and
can manage a large number of actuators - their subordinate agents - simultaneously. In addition,
agents of this type need to make decisions based on a large number of variables; positions and
states of agents, emergent patterns drawn from environment information, a history of past actions,
results of past actions, quantified uncertainty of environment information, and goals received from
higher-level agents.

The decision-making task of these agents is significantly more complex, and if based on the
traditional heuristic and procedural methods is extremely difficult to develop as it results in staggered
logic-gates (or very lengthy if-then-else conditions). Decision-making in complex environments
means choosing a single definite task based on thresholds taken from non-discrete variables. This
becomes very difficult to balance, and it is not ideally suited to real-time operation as decisions tend
to flicker when variables are close to threshold levels. A more suitable decision-making model for
complex agents has therefore been designed.

Figure 5.10: This staggered arrangement of inputs and rule tables uses fuzzy controllers to choose
actions. Fuzzifiers convert real input data into fuzzy logic partial truth values. Each decision-making
gate (FAMM) requires a small rule table to be written by the designer. The output actions are blended
smoothly between transitions using an aggregation process.

The fuzzy controller approach to decision making was originally developed to aid robot soccer
strategy [74], to take advantage of its very high degree of flexibility. It is possible to incorporate
a multitude of input variables into a fuzzy strategy layer with no added complexity to the decision
making process. Multi-dimensional decision arrays no longer have to be considered, and can sensi-
bly interpolate unknowns by aggregation of fuzzy outputs. If pairs of real inputs are analysed using
fuzzy associative memory matrix (FAMM)s, fuzzy outputs can be passed (without defuzzification)
as inputs to subsequent FAMMs. Figure 5.10 illustrates this approach.

5.5. AGENT BEHAVIOUR 41

It is possible to analyse a very large number of input variables in this manner, and that due to the
nature of the fuzzy process, that this would consume very little computational time because it only
considers one 2D FAMM at any one time. The inputs converge to a final 2D FAMM, and a single,
crisp output value is produced through the aggregation procedure.

The critical task of the agent architecture is matching goals to actions, and a fuzzy controller
module is used for this so that it can be left up to the designer how to arrange the different rules.
On the surface the structure is very similar to large if-then-else blocks, but at the kernel of this
approach is the fuzzy controller which smoothly blends between output states, rather than flickering
or stepping between output states as decision thresholds are arrived at. The design process itself
is open to introduction of new rules or input variables with this arrangement. New fuzzifiers and
FAMMs can be clipped onto an existing arrangement. When more than two outputs meet the final
FAMM then a new level of FAMM must be added onto the end of the arrangement. The action-
selection method can therefore be classified as a cascading arrangement of fuzzy controllers.

Figure 5.11: Two cooperating tank agents in a game-like environment are at C7 and E9. Under a
peer-to-peer society the agents would be unable to make a tactical manoeuvre that might put one
agent at risk, even if it were to the benefit of the group. Under the hierarchical society a third,
coordinating agent is able to order each tank to surround the enemy tank at D7, despite making one
tank vulnerable to the artillery at B6.

Figure 5.11 illustrates a typical agent coordination problem. In this example, we are dealing with
a battle-field game or simulation, where two tanks are controlled by cooperating agents. The first
agent is at map index (C, 7), and the second agent at index (E, 9). The agents each have a limited
model of their environment, covering 9 map cells, but they are in close enough proximity to each
other that there is some overlap of their neighbourhood models, which is indicated with a hatching
pattern. In a robot system one of the agents would decide that it is the leader based on the order of a
unique identifier, and then initiate the creation of a coordinating agent on its own internal hardware,
which might then be further distributed between agents to increase redundancy. In the illustrated
example, however, we are dealing with a simulated battle-field, so a fixed chunk of system resources
can be designated to a new coordinating agent. If each agent’s system knows how to generate a new
coordinator, then no new hardware would be required, and a coordinator could be quickly rebuilt if
the hardware supporting it is destroyed or disabled.

Let us assume that the agent at position (E, 9) in figure 5.11 has created a coordinating agent. The
agent at index (C, 7) has spotted two trees, an artillery piece, and a hostile tank, so it communicates

42 CHAPTER 5. A MODULAR AGENT MIDDLEWARE

the map index and type for each of these features in a report to the coordinating agent. The first
agent does not know anything about the terrain behind it, which is indicated on its map by question
mark characters. The agent at position (E, 9) has spotted two trees, and sends this information to the
coordinating agent. It has also observed position (D, 8), which was unknown to the first agent, and
so it communicates this information the coordinating agent also. We can assume that index (D, 8)
has been confirmed to be featureless terrain, and so this then sent to the first agent, which can then
reduce its “wariness” or threat rating on this side of the vehicle, and concentrate more of its defences
in the direction of the spotted threats.

By this stage the coordinating agent has built a map modelling the environment, with features
covering much of the area between (B, 6) and (F, 10). The coordinating agent has time-stamped
the information as it is received from the tank-controlling agents, which it considers to be its sen-
sors. In a common peer-to-peer type approach, where cooperation is usually defined loosely as a
sum of actions based on individual interests or “bids” [72,73], both tank agents could have swapped
environment information between each other and then made independent decisions; the first agent
would probably have retreated or attacked the artillery piece, which was more threatening to it than
the tank, and the second agent may have moved to engage the hostile tank. The outcome of these
individual decisions would have meant that the hostile tank had more time to move into a better
defensive position, and move its’ heavier frontal armour to face the second tank and minimise its
vulnerability, essentially evening the odds between forces. Under this architecture, however, the
coordinating agent has identified that the key target is the hostile tank, and directs both of the coop-
erating agents to attack it from two sides - maximising the chances of destroying it, although putting
the first tank at greater risk. The overall outcome, however would then move the advantage further
to the side of the cooperating agents; a tactical decision that could never have been made by true
peer-to-peer cooperation, which are not able to make decisions which are bad for one individual, but
good for the group, or indeed any sort of higher-level tactical decision.

In other sorts of environments, cooperating agents can be used to exchange a large variety of en-
vironment information in the same manner; map cells can be used to store obstacles, terrain heights,
terrain types or conditions, vehicle locations, agent locations, stages of planned routes of other agents
(to help avoid conflicting agent paths), and a variety of rôle-specific information that lends itself to
be discretised at the same resolution as the environment map. Retaining the simplicity of the envi-
ronment maps is the key to their usefulness, as they can then be easily and quickly looked-up and
communicated between cooperating agents.

The agent architecture has been developed with a lot of redundancy in mind. This is particularly
useful for a cooperating society of agents with unreliable communication, robots prone to battery
or equipment failure, for agents distributed over a number of physical machines, or for agents that
can literally be destroyed. Distributed agents should have some redundancy mechanism for regen-
erating lost modules on new hardware. The bottom-level mobile agents should be able to operate
autonomously, even if no coordinating agent is present. If a group of cooperating agents loses con-
tact with their coordinating agent, or if the mobile agent hosting the coordinating agent is destroyed,
then the mobile agent with the highest unique identifier should generate a new coordinating agent,
with only short term loss to environment data, but a possible loss of history information. This system
of redundancy remains true for higher level agents as well; if a group of level 1 coordinating agents
can make contact then the coordinating agent with the highest unique identifier value (inherited from
its host) can designate a bottom level agent to host a level 2 coordinator.

5.6 Summary

This chapter moves towards a complete architecture for autonomous agents that communicate, coop-
erate, and can be coordinated by a hierarchy of special coordinator agents. Because of the modular
architecture based on independent but communicating components these new agents can be dis-
tributed over multiple cores and even geographically separated machines, which means they can be

5.7. POSSIBLE EXTENSIONS TO THIS ARCHITECTURE 43

built with commodity hardware, or make use of existing idle resources. This new architecture intro-
duces a more effective model for multi-agent cooperation, and allows not only tactical decisions to
be made in a coordinated manner, but enables cooperative actions that benefit the objectives of the
whole group, rather than simply serving a large number agents’ individual goals. This architecture
is modular, easy to customise, applies to a large range of agent societies, and introduces distributed
agents and redundancy to agent components.

5.7 Possible Extensions to this Architecture
Theoretically, factory coordinator agents could be created like a virus (in the sense that it is not
dependent on any physical machine itself but can exist in a transient state within a communication
framework) that have the role of generating agents from pieces, using existing resources that it
discovers on the fly - true virtual machines. Grid or cloud-enabled agents of this type would then
provide massive redundancy to agents, so that even if its actuators and sensors were disabled the
agent could resume operation by communicating with new resources. For example; an automobile-
controlling agent that for some reason can no longer communicate with its cameras and range finders
might then be connected (by the factory agent) to the cameras of nearby vehicles and road-side
sensors and continue operation with all of it’s existing modules for steering and obstacle avoidance
intact, continuing navigation.

As agents become more resource-intensive the need to distribute agents grows, particularly with
real-time agents that require large chunks of CPU time and process several tasks. A modular ap-
proach lends itself to a distributed system, and to some degree can be designed to work asyn-
chronously. In this way the agent can exist within the Internet or cloud network, as long as it
knows which modules (or resources) to communicate between. Distributed intelligent agents may
be the next evolution in this architecture, seamlessly taking advantage of any resources that are made
available over complex networks whilst retaining the functionality of a cohesive agent machine.

44 CHAPTER 5. A MODULAR AGENT MIDDLEWARE

Chapter 6

On Design of Automatic Calibration
Systems

6.1 Introduction

Intelligent navigation and path-finding for computer-animated characters in graphical 3D environ-
ments is a major design challenge facing programmers of simulations, games, and cinematic pro-
ductions. Designing agents for computer-animated characters that are required to both move intelli-
gently around obstacles in the environment, and do so in a psycho-visually realistic way with smooth
motion is often a too-difficult challenge - designers generally sacrifice intelligent navigation for re-
alistic movement or vice versa. Presented in this chapter is a specially adapted hybrid algorithm as
a viable solution to meet both of these challenges simultaneously. The application of this algorithm
to animated characters and outline our proposed architecture for automatic tuning of this system is
discussed.1

Figure 6.1: The 3D robot soccer simulator with robots controlled by the Fuzzy A* algorithm. The
darker coloured robot at the top of the figure plans a path through moving robots. Blobs indicate
the points along the current plan for the robot’s path. The path itself is dynamic and will change
depending on the positions of moving obstacles. The actual motion along this path is performed by
the smooth-driving and reactive Fuzzy navigation system.

1Material in this chapter is based on original research published as A. Gerdelan and N. H. Reyes, “Towards A Generalised
Hybrid Path-Planning and Motion Control System with Auto-Calibration for Animated Characters in 3D Environments,”
Advances in Neuro-Information Processing, Springer Verlag LNCS, vol. 5507, pp. 2528, November 2008. [55]

45

46 CHAPTER 6. ON DESIGN OF AUTOMATIC CALIBRATION SYSTEMS

Previous works have focused on the development of next generation navigation algorithms for
soccer robots by combining existing navigation and motion control algorithms into hybrids which
exploit the benefits of the individual algorithms but also negate their limitations. To this end previous
works developed the Hybrid Fuzzy-A* [46] algorithm which can perform both efficient and dynamic
route planning in environments with static and moving obstacles, and also move using smooth-path
motion and avoid obstacles at very high speeds, requiring only a very small allocation of CPU
resources as robot soccer teams are typically controlled by one commodity desktop computer which
also has to process computer vision and direct 3-10 other robots every 1/30th of a second. Several
variants of this hybrid were created which enabled us to incorporate other properties into robot
behaviour [48, 74] - in particular, an ability for the ball-carrying robot to evade hostile robots on its
path to the opposition goal and pre-empt their path of movement as well [47]. The success of these
works, and also the impressive appearance of this algorithm operating in 3D graphical simulation
(see Figure 6.1), lead us to speculate whether the algorithm could be applied to a range of much
more demanding applications beyond the mathematically simple 2D realm of soccer robots.

For this chapter a real-time simulation engine has been constructed using the Ogre graphics li-
brary [68], which has been used successfully for military visualisation and simulation projects [78]
with success, to mimic a typical computer game-type environment as a proving ground for the ap-
plication of hybrid robot soccer control algorithms to much more complex 3D environments. This
type of environment also typically has limited CPU available for artificial intelligence computation
as 3D graphics processing tends to occupy the bulk of resources [79] so the need for efficient algo-
rithms is paramount, and can process sensory information with large amounts of environment noise
or complexity [80] - the kind of environments where fuzzy logic is ideal.

The Hybrid Fuzzy A* algorithm has been adapted so that it is scalable and can be applied to a
range of animated characters with their own specific motion characteristics. The initial implementa-
tion has been successful with vehicle-type animated characters - see Figure 6.2.

Due to the complexity of manually tuning the many algorithm parameters for optimal results an
architecture for automatic parameter calibration has been designed so that the system can self-train
for application to a range of new characters and environments by operating on a series of obstacle
courses - typical operating environments created by a designer for training - and self-evaluating.
Also detailed here are some new visualisation techniques, which were found necessary for visibility
of complex multi-level artificial intelligence systems in real-time applications; as post-run analysis
of animated character motion is an almost impossible task.

6.2 Hybrid Algorithm

The hybrid fuzzy A* algorithm is arranged in a cascade of systems. At the top level, the agent
is given some information about the obstacles and it builds an environment obstacle map. The
environments that are being considered so far can be simplified and expressed as a 2-dimensional
map, and are stored as a 2D array of values. More complex path-planning might require a 3D array of
values, but none of the simulations looked at in this thesis have been sufficiently complex movement
domains to warrant investigation of this possibility. The simulation is using an array of character
symbols to store the obstacle map, as this allows us to express a range of obstacle types with single
letters (’s’ for shrubs, ’b’ for buildings). A requirement of the system is that the agent has some
ability to divide the environment into a graph or searchable area. The agent then translates known
obstacle positions into graph indexes and marks the locations. In an environment with many dynamic
(moving) obstacles this map is recomputed with every frame of calculation. Larger obstacles can
occupy multiple graph cells.

The character will ultimately make use of several types of environment map as weighted search
domains for a depth-limited dynamic A* Algorithm (depth limited to scale to available CPU window
per application) to compute a a near-optimal, partially complete path to its target destination. Graph
nodes marked as containing obstacles will be either excluded from the search domain (impassable

6.2. HYBRID ALGORITHM 47

Fi
gu

re
6.

2:
A

n
an

im
at

ed
ch

ar
ac

te
r

-
in

th
is

ca
se

a
to

-s
ca

le
m

od
el

of
a

So
vi

et
T-

28
ci

rc
a

19
32

w
ith

si
m

ul
at

ed
re

al
ph

ys
ic

al
op

er
at

in
g

ch
ar

ac
te

ri
st

ic
s

-
tr

av
el

s
th

ro
ug

h
a

3D
-e

nv
ir

on
m

en
ti

n
th

e
si

m
ul

at
io

n
en

gi
ne

co
m

pl
et

e
w

ith
hi

lls
an

d
a

ra
ng

e
of

ob
st

ac
le

s.
T

he
ve

hi
cl

e
ha

s
pl

an
ne

d
a

pr
os

pe
ct

iv
e

pa
th

ar
ou

nd
ob

st
ac

le
s

us
in

g
th

e
A

*
co

m
po

ne
nt

of
th

e
H

yb
ri

d
Fu

zz
y

A
*

al
go

ri
th

m
(a

s
in

di
ca

te
d

by
th

e
se

gm
en

te
d

lin
e

vi
si

bl
e

ah
ea

d
of

th
e

ve
hi

cl
e

in
th

e
fig

ur
e)

an
d

ha
s

de
te

ct
ed

an
d

is
dr

iv
in

g
ar

ou
nd

th
e

ne
ar

es
to

bs
ta

cl
e

on
its

ri
gh

th
an

d
si

de
(a

s
in

di
ca

te
d

by
th

e
se

co
nd

lin
e

vi
si

bl
e

in
th

e
Fi

gu
re

)-
in

th
is

ca
se

a
ho

us
e.

48 CHAPTER 6. ON DESIGN OF AUTOMATIC CALIBRATION SYSTEMS

obstacles) or given a weight based on their resistance to the character’s movement (for example
shrubs may be given a moderate weight modifier for heavy vehicles in a military simulation or
game, as they can be driven over, but buildings may be impassable and excluded from the search
domain). This path is broken into way-points and the first or an early-stage way-point (if the graph
resolution is very high) is used as the current way-point and given to the Fuzzy navigation system as
target location crisp input.

Figure 6.3: Representing combined heuristic weights of cells in the environment graph. The A* Al-
gorithm will choose a path between grid cells minimising overall distance cost + any other balanced
heuristic.

Experience with robot soccer path-planning [47] has shown us that the A* Algorithm’s heuris-
tic can be modified to incorporate many different weighted inputs into the path-planning decision
process. A “heat” environment map is used to indicate areas of undesirability in the path of hostile
robots, so that the robot would be less likely to favour those locations even if the distance would
be slightly longer - inculcating an evasive property into the robot path planning process. Figure 6.3
gives a graphical representation of this heuristic balance used for evasive behaviour in the robot
soccer system [47].

Factors such as slope of terrain, and known condition of ground surface can be weighted as
proportions of the heuristic. Prudent designer decisions are required here to choose heuristics that are
meaningful in a particular 3D environment, although the best ratio of weights of each input could be
determined by self-training simulation runs. These heuristics may be tailored to a particular vehicle
or re-evaluated periodically to adapt to changing conditions; reflecting the value of a true dynamic
A*, as opposed to a less flexible variant such as D* [81].

The Fuzzy navigation layer is a rapid calculation system that takes the current way-point on the
path created by the A* layer as a rough guide. The systems can disagree - for example if the A*-
generated path dictates to move left around a tree, but the vehicle is actually already moving around
it to the right - then the path will be recalculated in the next frame of calculation. The fuzzy system
consider two groups of crisp input - the distance and angle to the nearest obstacle and the distance
and angle to the current way-point see Figure 6.4 for an illustration of this classification. These
two groups of inputs are fed into two distinct fuzzy set membership functions and fuzzy associative
memory matrices. The fuzzified outputs for obstacle avoidance and target seeking behaviour are
then be blended together using a centre of gravity function to produce smooth transitions between
the two behaviours.

Navigation outputs are, in the adapted hybrid algorithm, expressed as ratios of character prop-

6.2. HYBRID ALGORITHM 49

Figure 6.4: Classifying environment elements into overlapping fuzzy sets representing angles and
distances.

Figure 6.5: Scalable Fuzzy Navigation cascade with feedback loop to adjust instructions for a char-
acter’s known physical limitations.

50 CHAPTER 6. ON DESIGN OF AUTOMATIC CALIBRATION SYSTEMS

erties. Steering is also expressed as ratio of the speed control outputs. In this way the algorithm
should produce motion that is both scalable to a character’s motion limitations and applicable to a
range of characters. The Fuzzy A* algorithm has been extended with the additional of a feedback
loop (see Figure 6.5). This allows quick re-scaling of defuzzified output ratios should the intended
output ratios exceed a character’s physical limitations; for example a vehicle can not steer as sharply
as desired at its current speed. The feedback loop in the figure allows us to incorporate a simpli-
fied mechanical simulation into the system, simply by adding a function that can limit the range of
outputs to within the vehicle’s allowed parameters (e.g. not steering at an angle beyond a vehicle’s
maximum mechanical limit).

6.3 Visualisation
Figure 6.6 is a screen shot from the 3D graphical simulation that created as a proving ground for the
algorithms introduced in this chapter. Obstacles of various sizes are strewn about the 3D landscape
(houses and trees) and several monitoring panels overlay the display. Because of the level of com-
plexity and number of overlapping systems involved in real-time hybrid algorithms it is a great aid
to have a system in place for visualising these different processes in real-time so that the designer
can monitor the system as it happens with a full range of information. When an interesting case does
seem to occur in the behaviour of the character - for instance, it was observed that an agent-driven
vehicle was speeding up and slowing down even when travelling in a straight line - as illustrated
by the sawtooth pattern in the 3rd graph down on the left in Figure 6.6. When this behaviour was
observed it was able to pause the simulation time so that the vehicle stopped moving mid-sequence.
The screen capture in the figure shows the observed saw-tooth velocity graph. A system was also in
place whereby it was possible to export the data plots for all of these graphs to a range of formats for
closer inspection in external programmes, where it could be seen that the current way-point being
assigned to the fuzzy control system was always too close to the vehicle due to the high resolution
of the path-finding system.

6.4 Proposed Self-Training Architecture
Given the large number of parameters that need to be calibrated for animated character control, and
in particular for hybrid algorithms, it has been proposed that various automatic training systems be
employed for this task; GAs have been explored for robots soccer agent training [82], and evolving
neural networks have been used to improve and even generate entire behaviours for animated char-
acters [43, 44] with some success. It is intended to adopt a subset of these ideas to self-train our
characters. This chapter proposes an obstacle-course based survival of the fittest paradigm.

A range of obstacle courses can be quickly created with scenario designers, such as the real-
time designer that is built into the simulation engine used in this chapter. These courses can be
quickly designed as test cases for the sort of 3D environments that the characters would be expected
to operate when finally deployed. For example, we might design a course or scenario consisting of
flat landscape and large streets of house-like obstacles, and another course consisting of hills and
valleys with sporadic trees to avoid for training an animated soldier character for a war scene in a
film production.

The advantages of this kind of automatic training system would be:

• Initial characters start from some adequate basis, rather than from a zero-skill base

• Can train a large range of simulated characters or even simulations for real vehicles.

• Can adapt itself to new environments - e.g. we can hand-craft a new scenario that the char-
acter should have to be able to cope with and it can improve its system to deal with this new
environment as well.

6.4. PROPOSED SELF-TRAINING ARCHITECTURE 51

Fi
gu

re
6.

6:
G

ra
ph

in
g

na
vi

ga
tio

n
da

ta
in

re
al

tim
e.

52 CHAPTER 6. ON DESIGN OF AUTOMATIC CALIBRATION SYSTEMS

• Could be set to self-improve in real-time during real execution over a time-slice basis, rather
than a per-individual character basis.

Figure 6.7: Proposed algorithm for self-improving animated character navigation. Obstacle courses
are created manually; these represent, or are subsections of, the target operating environment. A
number of training runs are taken in this environment; and a fitness evaluation and selection function
tweaks navigation behaviour-controlling variables after each batch of runs in an attempt to gradually
improve the behaviour.

To implement a genetic algorithm as a self-tuning mechanism for motion control the following
steps are proposed:

1. Randomly adjust the parameters of a motion controller.

2. Randomly locate and orientate a character/vehicle that will use the controller.

3. Give the character’s agent a goal position at a fixed distance.

4. Start a simulation run where the character moves to the goal.

5. Collect mesh interpenetration distances (measure the crashes of the character with scenery).

6. Collect time to move from start location to goal.

7. Generate a fitness score for the simulation run based on the collected data (time * cumulative
distance of mesh interpenetration).

8. Repeat simulation run (above steps) a number of times to measure error in collected fitness
score, and stop when error measurements are small enough.

As can be seen in Figure 6.6, these parameters are already being extracted per character evalua-
tion. Using a “generation” of the character, each using slightly different modifications of parameters,
it is possible to “select” (as in selective breeding) the best two members of the generation - those
with the most minimal fitness scores to create the base parameters for the next generation. This
process is illustrated in 6.7.

It is also a possibility to distribute this system over a network of commodity-level machines for
very rapid mass training. There is infrastructure in the simulation engine in place for this sort of
distributed computing and a full investigation of this training architecture will be be investigated in
works in the near future.

6.5. CONCLUSIONS 53

6.5 Conclusions
This chapter has presented a snapshot of progress at adapting hybrid robot navigation algorithms to
animated characters in 3D environments, introduced adaptations that have had to make to the system
for application to more complex 3D environments, work towards completing a generalised version
of this system that can be applied to a range of autonomous animated characters, and illustrated
some visualisation techniques that were found to be particularly relevant to developing these sorts
of real-time systems. Future works will seek to expand on this work by automating the calibration
procedures for the hybrid algorithms dictating path-planning and motion control for these characters,
and have in this chapter introduced the proposed architecture for this system.

54 CHAPTER 6. ON DESIGN OF AUTOMATIC CALIBRATION SYSTEMS

Chapter 7

Adding Agent-Based Road Networks
To Simulations

7.1 Introduction

A trend is emerging among architects, urban planners, and others traditionally in demand of scale-
models and 3D visualisations away from “What will this look like?” models to “What will this look
like, and how will it work?” simulations. A major demand of these simulations is the addition of
realistic urban traffic in a non-intrusive, scalable way. This kind of feature can be used to demonstrate
how intersections and pedestrian areas in proposed new building cope with traffic flow. It allows
better immersion in a proposed design or reconstruction, and is also a highly valuable resource for
increasing the realism of computer games and animations. To address this challenge a system for
rapidly laying a working road-network within an existing 3D simulation has been designed, coupled
with an agent-based approach to traffic simulation such that every vehicle has its own intelligence,
goals, and decision-making ability.1.

Traffic simulations can be generalised into two distinct categories; a top-down approach where
traffic flow is based on mathematical flow formulae, and a bottom-up approach where each vehicle is
given some unique properties and traffic flow is then an emergent behaviour; the collective result of
each individual vehicle’s actions. The latter approach is commonly referred to as microsimulation.
As this work concerns 3D visualisations that produce convincing vehicle behaviour at the pedestrian
level upwards, this chapter focus only on agent-based microsimulation models in this chapter.2

Most modern agent-based simulations provide agents involved with a simple set of traffic be-
haviour rules. The main governing behaviour in these simulations is a formula which determines the
distance between each car on the road and the car that it is following.

d = l
v

k
(7.1)

In 1953 Louis Pipes made a mathematical analysis of traffic patterns which he called an idealised
Law of Separation [83]. In this simple model of traffic the focus is entirely on the following distance
behind the car in front. Equation 7.1 gives us a following distance to maintain d behind a vehicle
travelling at velocity v with a constant, so that for every ten miles per hour k there is the space
of another car length l added to the following distance. Pipes considered “the use of an electrical

1 A video of the road deployment system as described in this thesis with some prototype fuzzy-controlled vehicles is
available at http://antongerdelan.net/videos.html under the heading Early traffic simulation

2Material in this chapter expands original research first published as A. Gerdelan, “A solution for streamlining intelligent
agent-based traffic into 3D simulations and games,” Tech. Rep. CSTN-072, CSSG, Institute of Information and Mathematical
Sciences, Massey University, Albany, New Zealand, January 2009. [53]

55

http://antongerdelan.net/videos.html

56 CHAPTER 7. ADDING AGENT-BASED ROAD NETWORKS TO SIMULATIONS

analogue computer for studying the dynamical equations of the system”, and this model has set the
precedent for most agent-based traffic simulation.

aft+T =
α(vft+T)m(vlt − vft)

(xlt − xft)l
(7.2)

Successive generations of this type of stimulus-reaction model extend Pipes’ model by adding
further factors of consideration. The General Motors (GM) models [84,85] (Equation 7.2) determine
a vehicle’s acceleration a response rather than the distance of separation directly. In Equation 7.2
a driver response delay T is considered for the response after an instance t. Speed, sensitivity, and
headway coefficients are also modelled; m, α, l respectively. Accelerations a, velocities v, and
positions x are considered for leading and following vehicles, denoted by superscripts l and f.

aft+T =
(vlt − vft)2

2[S − (xlt − xft)]
+ alt (7.3)

Equation 7.3 - the Leutzbach Wiedemann model [86] - uses the leading vehicle’s acceleration
as stimulus for following vehicle. Whilst this formula may produce a pleasing traffic flow it is
certainly not a realistic behavioural microsimulation as human-modelled agents would certainly not
be capable of measuring a leading vehicle’s acceleration with even remote accuracy.

vft+T = min
[
vat+T , v

b
t+T

]
(7.4)

vat+T = vfT + 2.5aT

[
1 − vft

Vn

]√
0.025 +

vft
Vn

(7.5)

vbt+T = b ∗ T +√
b2T 2 − b

{
2
[
xlt − xft − Sjam

]
− vft T − (vlt)

2

b∗

}
(7.6)

Gipps [32], Krauß, Wagner, and Gawron (KWG) [33, 87] and their derivatives provide further
(again similar) formulae. Gipps’ 1981 model is overly computationally complex as we can see from
Equations 7.4-7.6 and therefore unsuitable for real-time simulation, but attempts to add realistic lim-
its to vehicle behaviour. This gives us a velocity for a following vehicle to maintain v (Equation 7.4)
based on an acceleration rate (Equation 7.5) and a braking rate (Equation 7.6). Krauß et al provide a
generalisation of cellular automaton formulae, comparable to Gipps’ model in form and function as
they are both formulae for ensuring safe distances between vehicles at a range of accelerations, albeit
sans expensive square root operations. The KWG model also adds some distribution of performance
over vehicles based on a pseudo-random factor.

d = ax+ bx (7.7)

bx = (bxadd + bxmultiZ)
√
vlt (7.8)

Wiedemann’s 1974 model [31] for a safe following distance (Equation 7.7) is based on an average
stand-still distance ax and a psychologically and statistically distributed safety distance bx (Equation
7.8). A bell curve distribution of driver car-spacing is created by setting Z between 0 and 1 with a
mean of 0.5 and standard deviation of 0.15. Although we note the presence of the square root
operator (undesirable for real-time simulations as it is time-consuming to calculate), the model has
been used successfully in modern 3D graphical traffic simulation VISSIM [88] for the urban traffic
component of that simulation framework.

7.2. REPRESENTING COMPLEX ROAD NETWORKS IN 3D SIMULATIONS 57

It must be noted, that whilst formulae of this type may be used to control very simple agents
having only an orientation, a position and a visual representation, these agents are then forced to
conform to a flow-type mathematical model and exhibit no rational intelligence - emergence of
traffic flow here is forced, and produces unconvincing motion when applied to graphical real-time
microsimulation. Pipes described his law as a rule of thumb - and it has merit as a prelude to the sort
of decision-making problems that vehicle-controlling agents will have to make, but these formulae
are of limited value to the reproduction of psycho-visually realistic driver behaviour at the individual
vehicle level - a property of paramount importance for creation of demonstrations and entertainment
applications. The aim of this and the following chapter is to produce convincing and road-competent
individual vehicles through well designed intelligent agents and have a working traffic flow emerge
as a true side effect.

Fuzzy Logic allows us to represent a partial truth, or imprecise values between completely true
and completely false. This gives us a mechanism for discriminating imprecise or changing data
into a small group of overlapping fuzzy sets. From this foundation we can create very simple
judgement-based reasoning, or fuzzy inference, to deal with complex real-world data; mimicking
human decision-making. Fuzzy Logic systems require very little computational overhead, and can
also produce smooth transitional outputs. Fuzzy Logic is therefore an ideal candidate for modelling
human driver behaviour in large-scale, real time simulations. Although Fuzzy Logic has been largely
overlooked for application to traffic simulation, research has been done to suggest that fuzzy logic
might be used in two different modes within microsimulation [52]; firstly for traffic flow data analy-
sis, and secondly as a controller module for a vehicle-driving agent. This second mode of operation
is of interest to us, and has been used in other works as a substitute for the car following model,
where a preliminary study has shown that a fuzzy model can more accurately reproduce real driver
behaviour than the long-standing GM model [89]. These fuzzy systems that model driver behaviour
also take advantage of the simplicity of cascading fuzzy classifiers such that weather and visibility
factors have been added into the simulation recipes with relative ease.

7.2 Representing Complex Road Networks in 3D Simulations

Figure 7.1: An example road network to model: empty streets around a virtual Trinity College
Dublin. Screen shot from Virtual Dublin [90]

Figure 7.1 gives us a good test-case on which to base the system. Pictured is part of the Dublin
city model developed for the Virtual Dublin project [90, 91]. That project involved creation of a

58 CHAPTER 7. ADDING AGENT-BASED ROAD NETWORKS TO SIMULATIONS

scale 3D graphical model, or virtual world, constituting a large section of Dublin - complete with
masses of pedestrians, detailed shop-fronts, accurately re-created buildings from the city itself, and
extensive urban roads. In essence an ideal problem, containing a large number of 3D elements
common to architectural simulations and modern game environments:

• To-scale models of urban landscapes already exist

• Geometrically large urban areas simulated

• Must run in real-time

• Interaction with existing 3D systems (world models, pedestrians)

• CPU and GPU constraints with existing systems

• Must be realistic at a range of camera angles and vantage points (car-level, pedestrian-level,
birds-eye, etc.)

Figure 7.2: A street map of the area around the Trinity College Dublin campus; many urban traffic
problem elements are present here.

7.2. REPRESENTING COMPLEX ROAD NETWORKS IN 3D SIMULATIONS 59

If we refer to the map in Figure 7.2, which considers just a small subsection of streets surrounding
those pictured in Figure 7.1, we can can see that a large number of complex and realistic problem
elements for urban traffic are present:

• A dense network of one-way streets surrounds the campus

• Large volumes of pedestrian traffic crossing roads

• Large amount of buses with different routes through this area

• Complex, multi-feed intersections (see D’Olier Street - College Street intersection)

• Pedestrian-only streets (Grafton Street)

• Heavily congested areas (College Green - College Street).

• Variation of street sizes: tight one-way alleys and multi-lane roads.

To tackle all of these problems a simplified digital representation of the road network needs to
be built, free of noise and complexity, such that the vehicle-controlling agents can use it as a guide
in the same way that one might refer to a street map when driving through a new city. Because the
3D environment already exists, a digital road map needs to be created as a post-process, and married
to the existing environment in such a manner so that it does not interfere with the existing work.

Figure 7.3: Representation of an automatically generated intersection and road network. Only a
very small number of nodes are required for the search domain of a city route plan.

At the most basic level a searchable graph can be created to represent the traffic network, as
illustrated in Figure 7.3. In the figure, circles are used to indicate the nodes which link the roads
(and which are later used as intersection controllers), and straight lines to represent road connections.
Uni-directional edges, or one-way streets, are indicated by the presence of an arrow head. Pedestrian-
only areas (such as Grafton Street) are excluded from the graph, and therefore also from the traffic

60 CHAPTER 7. ADDING AGENT-BASED ROAD NETWORKS TO SIMULATIONS

route-search domain. We can see that if some weighting and heuristic information is added to the
graph (such as estimated time to travel down each street, Manhattan distances between intersections,
or congestion delay estimates), and an actual cost then a very effective low-complexity weighted
graph can be quickly constructed, spanning even the entire city, that is searchable by either the A*
AlgorithmA* [92] or D* Algorithm [77], with very low cost overheads in terms of CPU. Search
routines can then be depth-limited to a desired threshold, such that a massive amount of dynamic
route-planning agents can operate not just pre-trip, but even be allowed dynamically change course
to reflect changing congestion conditions without demanding more processing time than is available.

Figure 7.4: Lane occupancy and following distance model; the white car maintains following dis-
tance behind a leading car on a section of continuous road. Circles represent the nodular break-down
of the road lane. In inner-city operation following cars aim to come to a complete halt at the last
unoccupied node along their route. In high-speed operation vehicles store time-stamp each node as
they exit it to emulate human following time estimation.

In practical application, bi-directional roads are treated as two separate streets. In order to mon-
itor traffic congestion, and to allow merging, lane-changing, and overtaking behaviour, each road is
split up into a smaller searchable graph of adjacent nodes; each node is large enough to accommodate
a standard-sized vehicle. These sub-graphs allow us to monitor congestion per-lane. They also allow
us to compute a car-following and lane-change model at a forward-thinking planning level, rather
than in a non-planning formulaic fashion as used by all of the existing traffic microsimulations that
were examined in this and the previous chapter. Thus the agents’ route planning mechanism will
comprise two layers:

1. A long-distance planning layer that creates a list of directions to follow to reach a destination
most expediently. In the case of buses, this list of directions is fixed, but other vehicles may be
allowed to dynamically recompute the directions to reflect changing congestion conditions.

2. A short-distance, depth-limited planning layer that plots the vehicle’s next few movements
up a street, and intelligently decides whether to change lanes or wait behind a slow leading
vehicle.

In essence then there are two weighted graphs; one linking all of the streets for the whole city, and
one higher resolution graph per-street. The D* Algorithm is almost certainly the ideal candidate for
the short-distance planning layer as it has an in-built mechanism for choosing whether or not to wait
for dynamic obstacles rather than simply moving around them as in other dynamic A* Algorithm
variants [46, 47]. This is a substantially different approach to traffic simulation, and one which
inculcates a thinking ability where over-taking behaviour is the result of cognitive, pre-meditated
intention, rather than simply as the pseudo-random bi-product of a clockwork system. The long-
distance graph could either be searched dynamically using a similar algorithm, or for a very large city
where the graph might be distributed over several machines all possible paths could be pre-computed
using a network routing algorithm. In this way it is known that the shortest path from every road to
every other road prior to simulation run-time, and then weight-changes due to congestion could be
propagated dynamically and update all of the routing tables in the system.

The advantage of sub-dividing road lanes into graphs (or chains, for single-lane roads) is illus-
trated in Figure 7.4. Here, a section of a continuous road is depicted that has been divided between
4 nodes. The vehicle occupying Node 1 is following the vehicle in Node 4. As the leading vehicle

7.3. ARCHITECTURE FOR NON-INTRUSIVE DATA STRUCTURES 61

drove into Node 4 it flagged the node as “occupied”. This then impacts the short-term path planning
of the following vehicle, which then aims to come to a complete halt by the time that it reaches the
centre of Node 3, which is currently unoccupied. Should the leading vehicle move on a subsequent
next node, then the following vehicle will instead aim to stop at Node 4, and so on. In this way a
safe following distance is maintained, not by gearing the entire vehicle system around an attempt to
reproduce a formula derived from countless hours of motorway watching, but by crudely emulating
human following behaviour - the “two second rule” - or driving at a speed so that if the leading ve-
hicle were to come to a sudden stop then the following vehicle has enough distance to stop without
collision.

Should this system be extended to higher speed zones, then the two-second rule could quite
literally be followed, and and add a time-stamp to the meta-data of each node as a vehicle exits it, so
that the following vehicle can attempt to ensure that it is two seconds behind the leading vehicle, and
inculcate this into its fuzzy acceleration and braking governor. This system is novel as the following
vehicle does not need to know the leading vehicle’s exact acceleration or velocity, as in other models,
but rather emulates human decision making. This car following system would be suitable for stop-
start traffic in congested inner-city areas, queueing at intersections, driving on empty streets, and
maintaining a safe distance on other roads. The realistic reproduction of driver behaviour then
largely hinges on the membership functions of each agent’s own Fuzzy Logic controllers.

7.3 Architecture for Non-Intrusive Data Structures
To avoid interference with existing simulation architecture, and so that the entire traffic and vehicle-
controlling system can be re-prioritised (or reniced, depending on the implementation) in terms of its
CPU allowance (allowed to calculate at less or more frequent intervals) the entire system has been
designed to operate as a separate, but encapsulated module with minimal communication links to
existing simulation architecture (see Figure 7.5).

The communication links between the Traffic Module and the existing simulation engine in
Figure 7.5 make two connections. The first link provides the time-step length and any changes of
location to potential road obstacles controlled by other parts of the simulation (such as pedestrians
moving onto the road). A second link communicates with a Real-Time Editor Module, which is
introduced in Section 7.4. This link provides the editor with 3D mouse picking information, or
simply where a designer has clicked the mouse in 3D space to indicate that a road should be laid.

Experiments have not yet been done to find how time-step resolution changes might affect traffic
flow, and thus what a minimum realistic (as compared to observed traffic flow data) frequency to
maintain might be for the simulation, but common-sense suggests that real-time simulations and
games targeting realism to human-perception should not fall too far outside of the normal rendering
cycle (a minimum of approximately 30Hz, or the frequency of human visual perception), although
this is a subject of ongoing study [93].

The navigation data itself is rather simple to organise; the smallest unit is the roughly car-sized
street node, a string of which are encapsulated into a street lane. Several lanes combine to form a
street unit, and these are linked together by intersection nodes, which link the start and end nodes of
streets and control the wait/go semaphores of these connecting nodes. Navigation by agents is then
a two-step process. The agent firstly queries the city map (street and intersection links only, as in
Figure 7.3), and secondly queries the street that it is currently driving on for more precise navigation
based on its nodes. As discussed in Section 7.4 the designer need only lay the street lanes; the streets
and city map are formed automatically.

7.4 Rapid Construction of Virtual Road Networks
The Ogre graphics library [68] has been used to construct a real-time simulation engine as a research
platform for this chapter. Into this engine a real-time editor module has been built, and an environ-

62 CHAPTER 7. ADDING AGENT-BASED ROAD NETWORKS TO SIMULATIONS

Figure 7.5: Non-intrusive module design. The entire traffic simulation sits externally to the main
simulation and model, acting as an external library, and is thus unintrusive; the original model and
simulation to do not need to be modified. The traffic module does need to be updated by the main
simulation with a few parameters, however, to make sure that the time-step is consistent. The main
vehicle controller module handles a collection of cars and buses which use fuzzy controllers for
steering and acceleration, but follow a route planned by the lane that they occupy in the road map.
A real-time editor module is also included in the model, which is used to manually match the road
map with the existing 3D environment model. The editor requires some additional input (mouse
instructions etc.).

7.4. RAPID CONSTRUCTION OF VIRTUAL ROAD NETWORKS 63

ment has been created where the existing model of of Dublin city around the Trinity College Dublin
campus has been loaded-in. Previous works have extolled the construction-time benefits of using
point-and-click editing tools within the 3D simulations themselves to good effect [59], and these
have been extended to build a rapid point-and-click design mechanism for the road-laying module
with a 3D graphical overlay in this chapter. Conversely, it would have been feasible to have loaded
the graphical editing module into the existing virtual Dublin simulation engine.

Figure 7.6: Laying roads within an existing 3D simulation model. Here translucent arrows are
displayed to represent road lanes, and arrow heads indicate lane direction. The lanes are created by
manually clicking and dragging in 3D with the mouse, which means that a designer can ensure that
lanes follow the road according to the 3D model, and take into account as much or as little detail
(such as intersections) as desired for the simulation.

Figures 7.6 and 7.7 shows us an example of a designer using the editing module within a running
simulation. The key tool available is the road-layer, which allows the designer to choose to start
laying a new road lane. The designer then clicks and drags a smooth line over the 3D environment,
and a string of translucent arrows overlay the environment. These arrows indicate the direction of
the street lane, and the location of each street node making up the street. The designer can then
manipulate the individual nodes to alter the shape of the street’s map representation or simply save
the street lane. Should the designer link the end node of a street to another street’s node, then an
intersection is automatically created. In this way a designer can very rapidly lay a representation
of an entire city’s streets without interfering with the existing simulation. Future work will allow
designers to customise intersections with different signals and controls.

Figure 7.9 shows us the system in operation; various automated and agent-driven vehicles em-
ploy a hybrid fuzzy algorithm to navigate through roads past the Bank of Ireland model from the
Virtual Dublin model.

64 CHAPTER 7. ADDING AGENT-BASED ROAD NETWORKS TO SIMULATIONS

Figure
7.7:

L
aying

roads
in

an
existing

sim
ulation.T

he
designeronly

needs
to

click
atthe

ends
ofeach

road,and
atany

significantcorners.T
his

m
eans

that
a

m
assive

road
netw

ork
can

be
crafted

overan
existing

3D
landscape

in
m

inutes.T
he

road
lane

atthe
bottom

ofthe
figure

has
been

selected
by

the
designer,

as
indicated

by
boxes

around
the

nodes.A
selected

lane
can

be
tw

eaked,branched
off,orthe

individualnodes
m

oved
as

required.

7.4. RAPID CONSTRUCTION OF VIRTUAL ROAD NETWORKS 65

Fi
gu

re
7.

8:
T

hi
s

fig
ur

e
sh

ow
s

us
a

bi
rd

s-
ey

e
vi

ew
of

th
e

or
ig

in
al

st
re

et
ar

ea
fr

om
Fi

gu
re

7.
1.

A
su

bs
et

of
th

e
ro

ad
la

ne
s

ta
ke

n
fr

om
th

e
m

ap
in

Fi
gu

re
s

7.
2

an
d

7.
3

ha
ve

be
en

re
cr

ea
te

d,
w

ith
th

e
on

e-
w

ay
di

re
ct

io
na

lit
y

of
la

ne
s

pr
es

er
ve

d.
W

e
ca

n
se

e
th

at
so

m
e

of
th

e
no

de
s

w
ill

ne
ed

to
be

sl
ig

ht
ly

m
an

ua
lly

ad
ju

st
ed

to
fo

llo
w

th
e

m
od

el
le

d
ro

ad
s

m
or

e
cl

os
el

y
as

m
an

y
of

th
e

po
in

ts
ha

ve
be

en
au

to
m

at
ic

al
ly

in
te

rp
ol

at
ed

an
d

ha
ve

no
tq

ui
te

m
at

ch
ed

th
e

m
od

el
in

th
is

ca
se

.

66 CHAPTER 7. ADDING AGENT-BASED ROAD NETWORKS TO SIMULATIONS

Figure
7.9:

Sim
ulated

traffic
autom

atically
navigate

the
previous

em
pty

streets
ofthe

D
ublin

m
odel.

7.5. FUTURE WORKS 67

7.5 Future Works

A mechanism for handling intersections is required. Extensive study to draw upon has already
been done in this area [94–96], as well as the handling of pedestrian-vehicle interactions at inter-
sections [97–99]. In the simulation, intersections controllers need to handle controlled and some
uncontrolled intersections; raising or lowering a meta-data semaphore (setting it to a wait or go
state) for each of our street-level nodes entering an intersection. This means that even at intersec-
tions without traffic lights vehicles are still compelled by the intersection itself to comply with traffic
rules, rather than each agent having an implicit knowledge of how to deal with stop signs and right-
of-way rules. Turning out of give-way or yield-type intersections may be handled automatically by
the car-following planning mechanism described above, but further experimentation is required to
ascertain if this is indeed the case.

The design requirements of vehicle-controlling agents for the traffic system have been outlined
in this chapter. Previous experience with agent architectures for both robotic and simulated vehicles
indicate that a multi-layered navigation stack architecture using a fuzzy steering and acceleration
controller may be a superior model in terms of smooth-motion output, expediency, and CPU utili-
sation [46–48, 70, 74, 100]. The chapter following this one will detail the agent architecture that has
been designed for this road system, the specific functions and information passing requirements of
the agent’s navigation stack, and detail the set membership functions and fuzzy associative memory
matrices used for agent reasoning.

Development of a special module for converting agent vehicle instructions into realistic ani-
mations will be investigated, with particular regard to steering behaviour, such that the path of each
wheel obeys vehicle motion physics. This work may derive from the previous experience developing
motor-control modules for two-wheeled robots using a similar fuzzy navigation module [101].

Due to the complex nature of optimising fuzzy set membership functions, the development of
an automatic calibration or training system for agents controlling each vehicle with different perfor-
mance and size specifications will be investigated. Research done for similar applications suggests
that a GA might be employed here [82]. Experimentation here would extend previous work in this
area [55].

Any realistic urban simulation involving both buses and pedestrians should also demonstrate in-
teraction between both elements; a combination of animation and AI algorithms will be investigated,
which may allow us to recreate realistic human-machine interaction scenarios. The effects that this
interaction would have on each of the two systems involved (pedestrian crowds and urban traffic)
would also be a subject of future study.

Distribution of the traffic system over multiple servers may become an issue for future considera-
tion. We have already touched upon the possibility of using routing algorithms for traffic navigation.
An architectural and communication design for a massive on-line distributed traffic system is a pos-
sibility for future research.

Also worthy of investigation is the scalability of the system; to conduct experiments to demon-
strate the magnitude of computational complexity with increase in the number of road vehicles in
simulation.

7.6 Discussion and Conclusions

An architecture for a streamlining traffic simulation into existing virtual worlds has been introduced,
and a method for quickly designating streets and traffic lanes within existing 3D simulation or model
has been detailed. The complete blueprint for the agent control system for navigating vehicles is
documented in the next chapter. The system is successfully in operation as part of the Metropolis
project at Trinity College Dublin, in Ireland.

The system introduces a novel level of realism to traffic simulation by utilising reasoning-based
logic models. The models imitate human driver decision making and planning for individual agents.

68 CHAPTER 7. ADDING AGENT-BASED ROAD NETWORKS TO SIMULATIONS

This contrasts starkly with contemporary models which only approximate realistic human behaviour
by injecting pseudo-random elements into mathematical formulae. Existing models can reproduce
realistic overall flow patterns, but do not yet provide the level of behavioural detail that modern
simulations and games require at the individual-vehicle level.

A large number of future works and extensions to the system have been planned, and particular
focus will be put on development of an intelligent agent model to a level where buses can additionally
cope with loading and unloading passengers in a complex 3D environment.

Chapter 8

Agents and Motion Controllers for
Road Vehicles

8.1 Introduction

The new wave of computer-driven entertainment technology throws audiences and game players into
massive virtual worlds where entire cities are rendered in real time. Computer animated characters
run through inner-city streets teeming with pedestrians, get into and out of cars, and drive through
rush-hour traffic; all fully rendered with 3D graphics, animations, particle effects and linked to 3D
sound effects to produce more realistic and immersive computer-hosted entertainment experiences.
Figure 8.1 illustrates our 3D traffic simulation (the final product). No modern urban environment
is complete without realistic simulated road traffic, however traffic simulation has not kept pace
with the entertainment industry - modern traffic simulations simply do not reproduce convincing
individual driver intelligence to the level required by interactive entertainment. This chapter presents
a new paradigm for agent-driven traffic simulation, specifically designed for such applications. The
agent architecture utilises a new hybrid algorithm for dynamic road navigation, implicitly facilitates
rational overtaking behaviour, and produces realistic smooth-motion vehicle control.1

The previous chapter introduced a rapid system for manually laying road networks within exist-
ing simulations. The roads created in this system had to support vehicle-driving agents that could
integrate into the complex environments of modern visualisations and simulations. To tackle all of
these problems a simplified digital representation of the road network is built; free of noise and com-
plexity, such that our vehicle-controlling agents can use it as a guide in the same way that one might
refer to a street map when driving through a new city. Because the 3D environment already exists,
it is necessary to create the digital road map as a post-process, and the technique is to marry it to the
existing environment in such a manner so that it does not interfere with the existing work.

In the previous chapter major traffic simulation models were analysed [31–33,83–88] and it was
found that they are based on a car-following formula as the primary system input to each vehicle-
driving agent. Equations 7.4, 7.5, and 7.6 give us Gipps’ [32] traffic model - which dictates the
velocity of a following vehicle vf as a combination of an acceleration rate va and a braking rate vb

based on a distance of separation behind the lead vehicle xlt − xft .
The method discussed in this chapter takes a different approach, where the agents conduct a

graph search of the road network; primarily using a list of way-points as input. Other traffic are
taken into account as dynamic obstacles - car following in this model is a secondary, emergent
property. An advantage of this approach is that lane-changing behaviour is dictated by a rational

1Material in this chapter expands original research first published as A. Gerdelan, “Driving Intelligence: A New Archi-
tecture and Novel Hybrid Algorithm for Next-Generation Urban Traffic Simulation,” Tech. Rep. CSTN-079, CSSG, Institute
of Information and Mathematical Sciences, Massey University, Albany, New Zealand, February 2009. [54]

69

70 CHAPTER 8. AGENTS AND MOTION CONTROLLERS FOR ROAD VEHICLES

Figure 8.1: The system in operation: real-time congested traffic simulation for Dame Street, Dublin,
Ireland.

Figure 8.2: A test vehicle, created for the traffic simulation - an Enviro 400 Dublin Bus.

8.2. AGENT PARADIGM 71

agent decision, rather than as the product of a pseudo-random formula, as it is in the major models.
As this simulation is to be viewed at a range of levels of detail it aims to produce a more convincing
behaviour model for individual vehicles first, and a traffic flow simulation second.

8.2 Agent Paradigm
The agents that have been designed operate with a Belief-Desire-Intention (BDI) [22] intelligent
agent model, and are based on a simplified version of the stack architecture for robot-controlling
agents in Chapter 5. It must be pointed out that the particular agents designed for this implementa-
tion do not use a drive-train simulation, but rather a simplified model where the agents’ controllers
directly affected the speed, and orientation angle of the vehicles.

Whilst other simulation developers have endeavoured to produce realistic models of human
audio-visual perception, for the sake of simplicity this work “cheats”; providing the agents’ be-
lief or perceptual input with hard, generalised data. The agents are aware of all of the other vehicles
and static and dynamic obstacles in their proximity. This simulation also broadly assumes that the
agents have knowledge of local road congestion heuristics; representing knowledge of which roads
to avoid at peak hour. The road itself simply provides all of the car-driving agents on it with the
same network-weight information. A driver route-planning model that incorporates a psycho-visual
model has not been investigated. Adding error to this information, or utilising real congestion and
driver-behaviour data from city planners may be a subject for focus in future works.

The following specific information is regularly sent to each simulated agent, constituting its
crude perception of the world:

• The relative location of the nearest moving or stationary obstacle (whichever is closer)

• The relative location of the next point along the path that the agent has planned for itself

• Local road network linkage information (a city map)

• Local road congestion heuristics (an estimate of congestion on each road)

• Occupancy of nearby road lanes

All of the agents are given a generalised goal, or list of goals upon entry into the simulation.
The first case to consider is that of city buses operating set routes through the city. The bus-driving
agents are given a list of way-points, stops, and time-table information, and then the agent is left
with the task of driving through traffic between these points, making the appropriate stops. Private
cars have even more generalised goals - they simply have a destination - the agent must contrive its
own plan for navigation through traffic in a dynamic fashion.

The intention component of the agent model comprises several key functions;

1. Using “belief” information to form a multi-stage plan to achieve desired goals.

2. Working out specific actions to take immediately to move to the next stage of the plan.

3. Attempting to affect those actions

In the case of the car-driving agents, a specific example of this process is:

1. Using road-network information to find a short path to the destination.

2. Decide if it is necessary to change steering and acceleration such that the vehicle follows the
road lane and avoids crashing into anything.

3. Adjust steering and braking/acceleration.

72 CHAPTER 8. AGENTS AND MOTION CONTROLLERS FOR ROAD VEHICLES

Figure 8.3: Architecture of the agents used for driving vehicles. The main modules represent belief,
desire, and intention - input from external controllers, “goal destinations”, and output from fuzzy
systems.

8.3. PATH PLANNING 73

The architecture stack is illustrated in Figure 8.3. The architecture is broken into several layers
of processing. This is a typical stack BDI agent architecture, of the type developed in Chapter 5,
which is both CPU-efficient and successful for driving real-time agents using hybrid architectures, as
demonstrated in previous works [46–48, 55]. Important to note about the design, is that the “desire”
component of the agent, in this case the reactive fuzzy systems’ output does not necessarily translate
1 : 1 into the vehicle’s actual movement in the world. Because it is intended to use this architecture
as a generalised agent middleware, supporting a large range of vehicles with different performance
characteristics, an additional output module is provided, which governs the actual output based on
the physics of the environment, and the performance characteristics of a particular vehicle.

Any intelligent agent worthy of its name has the ability to evaluate the output of its own ac-
tions [75]. In order to facilitate this behaviour, a feedback loop is included - this lets the fuzzy
controller module quantify how much its intended outputs have been constrained by physical limi-
tations, and it can scale back its instructions to suit. The entire stack is generally updated with every
frame, however to support a very large number of agents operating on one CPU simultaneously, the
initial testing indicates that throttling back the dynamic path-planning module to 6Hz, and the reac-
tive module to no less than 30Hz provides an effective minimum threshold of updates. Any less fre-
quent updates and approximated curved path-following behaviour becomes highly erratic. A study
to confirm the effects of time-slice update throttling on AI and movement by vehicle-controlling
agents is a an ongoing work [93].

8.3 Path Planning
The two layers of path-planning in the system both conduct fast searches of roads represented as
nodular networks. The higher-level module takes an agent’s desired destination and determines a
path through a city, making use of a pre-computed graph that is generated from the rapid road-laying
tool introduced in the previous chapter. This graph is purely made up of road intersection points,
and as such is a very small graph to search (see Figure 7.3). There are several search method options
for this graph:

1. a static route look-up, using pre-computed paths

2. pre-defining routes to every destination, updated dynamically by the Road Manager using a
routing algorithm

3. a dynamic heuristic-based search (during driving) to reflect changing conditions such as con-
gestion.

In extremely large simulations, or those where the time period simulated does not allow for
changing conditions, then a pre-computed route model may suffice. Propagating congestion infor-
mation around a city map using a routing algorithm would require a powerful central server, but may
make for an interesting case study for urban planning. It was decided to use a standard approach and
do a dynamic heuristic search of the road map at any time that an agent’s goal destination changes.
To reflect changing congestion conditions it is also possible to recompute this route during travel,
but progressive traffic pattern change simulations have not been investigated at this stage, although
a possible subject of future work may be to demonstrate changing patterns of traffic at peak hours
- where cars take alternative routes. The ubiquitous A* Algorithm [92] has been employed for this
task.

The lower-layer path finding is dynamic, and operates within individual road lanes. The road
lane laying system automatically breaks lanes into vehicle-sized nodes. These are both searchable,
and also aid car following separation and traffic queueing. Single lanes are simply list-traversal
operations, where nodes that are occupied temporarily halt the generated path (see Figure 7.4 for
illustration). Multi-lane roads facilitate emergent lane-changing behaviour. Given a small heuristic
cost for changing lanes, it is possible to stimulate the agents to spread evenly over multiple road

74 CHAPTER 8. AGENTS AND MOTION CONTROLLERS FOR ROAD VEHICLES

Real Term Rough Set Value Range Fuzzy Term
Wide Arc > 0.40 rad WID
Mid-range Arc 0.20 − 0.60 rad MID
Narrow Arc 0 − 0.40 rad NAR
Far Distance > 20m FAR
Medium Distance 0 − 28.28m MED
Near Distance 0 − 20m NEA

Table 8.1: Fuzzy Input Term Definitions (Route-Following). A 3x3 input set model is used as based
on previous works [46,47]. This table shows what range of input values are accepted as part of each
set. The third column gives us the fuzzy shorthand name for each set. Note that the ranges for the
sets overlap; this helps us smoothly transition between rules rather than hard-step as in traditional
logic.

lanes, or for faster vehicles to decide to overtake slower leading vehicles. In this way it is possible
to completely avoid designing or employing a complex, and clockwork mathematical formula for
representing lane-changing behaviour as is widely employed for traffic simulation models.

8.4 Reactive Vehicle Control
Initial studies [89] have shown that fuzzy-logic based models can represent real traffic flow more
accurately than traditional GM traffic simulation models, and take more detailed simulation variables
into account - such as representing behaviour based on different levels of driver experience, and the
more accurately modelling the affect that varying weather conditions have on driver behaviour across
different experience levels.

The current driver agent model divides into two fuzzy control systems. Both operate in real-time,
and both are blended together to form a combined result for steering and acceleration behaviour.
These two complimentary systems are:

• reactive obstacle avoidance

• route following behaviour

The route following system takes as input the next way-point, fed down from the path-planning
layer. Specific inputs used are the change in heading angle and distance to this way-point. Con-
versely, the obstacle avoidance system considers the change in heading angle, and distance to the
nearest obstacle. Both of these systems classify the real inputs into overlapping rough sets, where
they can be classified in human terms, for a quick look-up-table type decision. The mapping of these
inputs is designed so that for a vehicle moving up a lane, oncoming traffic can be ignored unless it
crosses into the path of the subject vehicle, and if so - a series of rules will progressively move the
subject vehicle away from its route, avoid the obstacle, then finally return to its route. Tables 8.1,
and 8.2 provide the design for fuzzy input set mappings. Fuzzy sets for classifying (or fuzzifying)
real inputs into rough sets are illustrated in Figures 8.4-8.7.

The vehicles’ output performance specifications are mapped to fuzzy output sets (Tables 8.3
and 8.4). Because it is convenient to represent a range of different vehicles with the same fuzzy
system pattern, outputs are expressed in terms of a vehicle’s maximum velocity (vmax). The steering
adjustment outputs are also expressed relative to the vehicle’s current speed; such that resultant
movement vector of the vehicle is to some extent scalable, and so expect similar rates of vehicle
turn at different speeds. A further feedback system is then used to scale back the output if current
physical performances limits are reached.

Fuzzy Output set mapping functions are illustrated in Figures 8.8-8.10.

8.4. REACTIVE VEHICLE CONTROL 75

Real Term Rough Set Value Range Fuzzy Term
Wide Arc > 0.80 rad WID
Mid-range Arc 0.40 − 1.20 rad MID
Narrow Arc 0 − 0.80 rad NAR
Far Distance > 14.14m FAR
Medium Distance 0 − 28.28m MED
Near Distance 0 − 14.14m NEA

Table 8.2: Fuzzy Input Term Definitions (Obstacle Avoidance). An interesting feature of the obsta-
cle avoidance input sets is that, whilst route-following behaviour can operate alone (when there are
no obstacles), obstacle-avoidance is actually a modifier to route-following. The input angles here
are double the range for route following so that the opposite extreme turn can be applied to any
route-following turn if so required.

Figure 8.4: Fuzzy set membership functions for classifying the angle to the nearest next way-point
in fuzzy terms. Angles here are absolute radians to the left or right of the current heading of a
vehicle, so that way-points on the left hand side of a vehicle are treated the same as way-points to
the right.

76 CHAPTER 8. AGENTS AND MOTION CONTROLLERS FOR ROAD VEHICLES

Figure 8.5: Fuzzy set Membership functions for classifying the angle to the nearest obstacle in
fuzzy terms. Angles here are absolute radians to the left or right of the current heading of a vehicle,
so that obstacles on the left hand side of a vehicle are treated the same as obstacles to the right.

Figure 8.6: Fuzzy Input Set Membership Functions for classifying the distance to the next way-point
in fuzzy terms.

8.4. REACTIVE VEHICLE CONTROL 77

Figure 8.7: Fuzzy Input Set Membership Functions for classifying the distance to the nearest obsta-
cle in fuzzy terms.

Real Term Centre Value Fuzzy Term
Top Speed 1.0 · vmax TOP
Fast Speed 0.8 · vmax FAS
Medium Speed 0.6 · vmax MED
Slow Speed 0.4 · vmax SLO
Very Slow Speed 0.2 · vmax VSL
Stop 0.0 · vmax ZER
Full turn vdefuzz · 0.08rad · s−1 FUL
Very Sharp Turn vdefuzz · 0.06rad · s−1 VSH
Sharp Turn vdefuzz · 0.04rad · s−1 SHA
Medium Turn vdefuzz · 0.02rad · s−1 MED
Light turn vdefuzz · 0.01rad · s−1 LIG
Very Light turn vdefuzz · 0.005rad · s−1 VLI
No turn vdefuzz · 0.0rad · s−1 ZER

Table 8.3: Fuzzy output term definitions for the route following component. These fuzzy sets
are quite different to fuzzy input sets, as their purpose is to define centre-points for a centre-of-
gravity function. The process of combining fuzzy outputs into a final combined crisp output is
called “defuzzification”. A large range of output sets are defined to give the rules more flexibility
to switch between outputs. Note that not all outputs are used in rules. They have been left in the
system as it is intended to develop an auto-training system in future works that can experiment with
a range of outputs.

78 CHAPTER 8. AGENTS AND MOTION CONTROLLERS FOR ROAD VEHICLES

Real Term Centre Value Fuzzy Term
Top Speed 1.0 · vmax TOP
Fast Speed 0.8 · vmax FAS
Medium Speed 0.6 · vmax MED
Slow Speed 0.4 · vmax SLO
Very Slow Speed 0.2 · vmax VSL
Stop 0.0 · vmax ZER
Full turn vdefuzz · 0.16rad · s−1 FUL
Very Sharp Turn vdefuzz · 0.12rad · s−1 VSH
Sharp Turn vdefuzz · 0.08rad · s−1 SHA
Medium Turn vdefuzz · 0.04rad · s−1 MED
Light turn vdefuzz · 0.02rad · s−1 LIG
Very Light turn vdefuzz · 0.01rad · s−1 VLI
No turn vdefuzz · 0.0rad · s−1 ZER

Table 8.4: Fuzzy Output Term Definitions (Obstacle Avoidance Component). The values expressed
in output sets are not actual velocities, as one would expect, but rather a portion of a vehicle’s
maximum allowable speed. This allows us to use the same output set definitions for a range of
different vehicles, and also for vehicles in different speed limit zones. The output steering is relative
to a vehicle’s output speed - this helps us to maintain similar steering rates (velocity vectors) at a
range of different speeds.

Figure 8.8: Fuzzy output value midpoints for desired speed factor. The defuzzified output speed
factor will be multiplied with the vehicle’s top allowable speed to produce a desired speed as a real
number.

8.4. REACTIVE VEHICLE CONTROL 79

Figure 8.9: Fuzzy Output Value centres for base route-following desired steering adjustment factor.
This factor is directly proportional to the vehicle’s base route-following speed factor so that the
vehicle will steer remain én route over a range of speeds.

Figure 8.10: Fuzzy Output Value centres for obstacle avoidance desired steering adjustment modi-
fier. This factor is subtracted from the route-following steering factor. To enable the same range of
steering adjustment these values are exactly double those used for route-following.

80 CHAPTER 8. AGENTS AND MOTION CONTROLLERS FOR ROAD VEHICLES

NEA MED FAR
NAR ZER VSL ZER
MID VSL SLO MED
WID SLO MED FAS

Table 8.5: 3× 3 FAMM for Desired Speed (Obstacle Avoidance Component). Output fuzzy speeds
are given for all fuzzy input distances and angles.

NEA MED FAR
NAR SHA MED VLI
MID MED VLI ZER
WID VLI ZER ZER

Table 8.6: 3 × 3 FAMM for Desired Steering (Obstacle Avoidance Component). Output fuzzy
steering adjustments are given for all fuzzy input distances and angles.

The labour-intensive task is then to design fuzzy rules. These map all of the different combi-
nations of fuzzy input values to fuzzy outputs. A sample of the rule design is given below. Whilst
rules can be hand-adjusted to produce a satisfying output for one particular vehicle, the fuzzy sys-
tems need to be recalibrated for every vehicle with different performance characteristics or physical
dimensions. To simulate a large variety of urban vehicles this task becomes a complex constraint-
based problem; and it is a problem that will be tackled in the next chapters by way of an automatic-
calibration and self-training system. Initial rules are provided in Tables 8.5-8.8. Note that not all of
the output sets have been used in these rules, and that there is certainly scope for designing more
balanced rule-sets.

I f t h e o b s t a c l e i s a n e a r d i s t a n c e away ,
and t h e o b s t a c l e i s a nar row a n g l e from t h e head ing ,
t h e n change speed t o zero ,
and change s t e e r i n g t o a s h a r p t u r n .

I f t h e o b s t a c l e i s a medium d i s t a n c e away ,
and t h e o b s t a c l e i s a nar row} a n g l e from t h e head ing ,
t h e n change speed t o ve ry slow ,
and change s t e e r i n g t o a medium t u r n .

I f t h e o b s t a c l e i s a f a r d i s t a n c e away ,
and t h e o b s t a c l e i s a nar row a n g l e from t h e head ing ,
t h e n change speed t o zero ,
and change s t e e r i n g t o a ve ry l i g h t t u r n .

. . .

Above is a subset of the fuzzy rule design for obstacle avoidance. Rules map each possible
combination of fuzzy inputs to valid fuzzy outputs. After designing the fuzzy inference engine in
human terms like this it is possible to create look-up tables for quick operation as expressed in
Tables 8.5 and Tables 8.6.

Once all of the rules have been evaluated an aggregation “centre-of-gravity” function merges the
outputs for each system. The outputs of both systems are then blended together; the steering of the
obstacle-avoidance component is exactly double that of the route-following system in order to reflect
this. The rules, therefore, need to be designed to reflect the operation of the system in combination;

8.5. DISCUSSION AND CONCLUSIONS 81

note: not all outputs used - scope for using these for adjustment of rules

NEA MED FAR
NAR VSL FAS TOP
MID VSL MED FAS
WID VSL SLO MED

Table 8.7: 3×3 FAMM for Desired Speed (Route-Following Component). Output fuzzy speeds are
given for all fuzzy input distances and angles.

NEA MED FAR
NAR ZER VLI LIG
MID VLI LIG MED
WID LIG MED SHA

Table 8.8: 3×3 FAMM for Desired Steering (Route-Following Component). Output fuzzy steering
adjustments are given for all fuzzy input distances and angles.

a difficult task to accomplish manually, and which further underlines the advantage that would be
gained from an auto-calibrating system.

8.5 Discussion and Conclusions
An early version of the complete system (agent control with road map integration in a 3D city) was
demonstrated at the Metropolis exhibition at the Science Gallery, Trinity College Dublin throughout
May 2009. Figure 8.11 demonstrates the complete system in action; a range of vehicles have been
spawned to replicate high-congestion traffic around the Trinity College Dublin campus. A range of
vehicles, road lanes, and mergers are represented.

Figure 8.12 presents this same scene, but with road lane demarcations visible. Each one of the
arrows in Figure 8.12 corresponds to one of the road lane nodes - a roughly vehicle-sized tag used
by the agents to facilitate traffic queueing and vehicle-following higher-level behaviours.

Using vehicle-sized nodes is an effective method for calculating the spacing between vehicles
when vehicles are all of roughly similar sizes and speeds. However, the traffic simulation described
in this chapter also included long buses. This meant that nodes had to be expanded to bus-sized nodes
as minimum, which means bigger spacing between queueing vehicles. This is not noticeable in low-
congestion scenarios, and indeed in our simulation there was not enough available computational
resources to simulate very large amounts of vehicles at once. However, larger-scale simulations
would need to switch to a different mechanism for maintaining spacing when traffic is stopped and
queueing.

In a large city scene, with over 2000 vehicles simulated in real-time simultaneously, it was pos-
sible to maintain processing of over 200Hz (frames rendered per second) using a single thread
programme architecture on an Intel Core(TM)2 Quad 2.4GHz CPU with a GeForce 8800 GTX
card, which more than satisfied the requirement that the traffic was unintrusive in terms of the over-
all programme. The main intention is to extend this work with a self-training module that operates
by running a new vehicle through a range of obstacle courses representing typical simulation operat-
ing environments and key problems (tight corners, intersections, merging traffic, static and dynamic
obstacles etc). Batches of these runs will generate a large amount of comparative performance data,
which gives us grounds for full agent improvement, and should provide us with enough information
to show how effective this approach is in tuning fuzzy sets and rules for best effect. The best se-
lection method for self-improvement is a matter of study in future work, with options ranging from

82 CHAPTER 8. AGENTS AND MOTION CONTROLLERS FOR ROAD VEHICLES

Figure 8.11: Prototype system in operation: real-time congested traffic simulation for College Street,
Dublin City.

8.5. DISCUSSION AND CONCLUSIONS 83

Figure 8.12: Prototype system in operation: lane demarcations for College Street, Dublin City.

84 CHAPTER 8. AGENTS AND MOTION CONTROLLERS FOR ROAD VEHICLES

brute-force methods, evolutionary selection, and genetic algorithms (GAs). GAs have been designed
for the similar problem of soccer robots [82], and as this hybrid system is an extension of robot nav-
igation algorithms, then GAs for simulated vehicle control warrants investigation also. All of these
concepts are explored in the remaining chapters of this thesis. Figure 8.13 illustrates the final 3D
traffic driving autonomously, using the generated road map, and fuzzy steering mechanism.

8.5. DISCUSSION AND CONCLUSIONS 85

Fi
gu

re
8.

13
:

St
re

et
-l

ev
el

sc
en

e
of

sy
st

em
in

op
er

at
io

n:
re

al
-t

im
e

co
ng

es
te

d
tr

af
fic

si
m

ul
at

io
n

fo
rD

am
e

St
re

et
,D

ub
lin

C
ity

.

86 CHAPTER 8. AGENTS AND MOTION CONTROLLERS FOR ROAD VEHICLES

Chapter 9

On Simulation Frameworks for
Automatic Calibration Systems

9.1 Introduction
Enabling vehicle-driving intelligent agents to improve their own driving behaviour requires a spe-
cialised simulation framework. The design of such a framework is no trivial task, and a number
of critical design questions are raised. Numerous training machine-learning paradigms are avail-
able; brute-force methods, evolutionary selection techniques and genetic algorithms - what are the
training/performance trade-offs of each? How do we choose from the wide variety of variables that
can be used to punish or reward the agents? There is also a completely open design choice when it
comes to choosing a training arena - should the agents learn during application or in pre-built train-
ing courses? This chapter examines a range of different methods for application to particular agents,
evaluates the use of different levels of complexity for fitness evaluation functions, and explores dif-
ferences in framework design to optimise either navigation performance or human-perceived realism
of simulated motion through machine learning techniques. In the course of this work new tools were
created to aid design, and these are also discussed.

Given the large number of parameters that need to be calibrated for autonomous vehicle control,
and in particular for hybrid algorithms [46–48,74], various automatic training systems that might be
employed for this task have been proposed [55]; genetic algorithms have been explored for robots
soccer agent training [82], and evolving neural networks have been used to improve and even gen-
erate entire behaviours for animated characters [43, 44] with some success. This work intends to
adopt a subset of these ideas to self-train our agents. This chapter introduces a survival of the fittest
paradigm.

A range of obstacle courses can be quickly created with scenario design toolkits, such as the
collection of tools which have already been discussed in Chapter 4 of this thesis for simulation
frameworks; 3D training arena designers, rapid road-network-laying tools, and terrain formation
tools [53, 54, 59]. These training arenas can be quickly designed as test cases for the sort of 3D
environments that the vehicles would be expected to operate within when finally deployed. For
example; we might design a scenario consisting of flat landscape and large streets of house-like
obstacles, and another course consisting of hills and valleys with sporadic trees to train a simulated
military vehicle for a war scene in a film production.

The advantages of this kind of automatic training system would be:

• Initial agents start from some adequate basis, rather than from a zero-skill base as in contem-
porary works.

• Can train a large range of simulated agents or even simulations for real vehicles, (this work

87

88CHAPTER 9. ON SIMULATION FRAMEWORKS FOR AUTOMATIC CALIBRATION SYSTEMS

has developed from robotics applications [46]).

• Can adapt itself to new environments - e.g. we can hand-craft a new scenario that the agent
should have to be able to cope with and it can improve its system to deal with this new envi-
ronment as well.

• Could be set to self-improve in real-time during real execution over a time-slice basis, rather
than a per-individual agent basis.

From a generation of agents, each with slightly different modifications of fuzzy rules, we can
select and merge the best members of the generation (with the most minimal fitness scores) to create
the base parameters for the next generation. This process is illustrated in Figure 6.7.

It is also possible to look at distribution of a training system over a network of commodity-level
machines for very rapid mass training. This infrastructure sort of distributed computing is in place
in the simulation engine developed for this chapter, although early experiences have found that this
approach is not ideal for graphical simulations as most of the benefits of parallelised training are out-
weighed by the costs of GPU hardware, and driver-related unreliability for this type of application.
Of course, one of the great strengths of the visualisation-based work that has been done throughout
this thesis is the ability to monitor and comprehend the simulations as they happen. The option of
interactively visualising, and interrupting simulations when desired, is possibly a more powerful tool
than parallel processing power which introduces a black-box element to training.

9.2 Works of Note
Although the possibility of hybrid systems for animated character animation has been largely un-
touched, there is some interesting research being done in the field of Neural Networks relating to
animated characters. Of particular importance is the development of the NERO game [43,44] by re-
searchers at the University of Texas at Austin. Researchers working on the NERO system have built
a 3D real-time graphical simulation on 3D graphics engine software popular with games developers,
and show that characters for computer games can be trained to evolve human-guided autonomous
intelligent behaviours using genetic algorithms through a punishment and reward scheme [40, 42]
which they have coined neuroevolution [102]. Interestingly this happens in real-time [103].

The designers claim that a team (or perhaps more appropriately a species) of these agents can be
trained from scratch to a level of competitive behaviour in only a few minutes [41]. There are some
research gems within this work can be used in training and automatic calibration systems:

• The characters are trained before final use on a range of human-designed obstacle courses that
represent the sort of environment conditions that they will encounter when in actual use.

• The characters are trained in real-time; a time limit is taken to kill off agents controlling old
surviving robots so that evolution can continue.

It is certainly possible to adapt the proposed genetic algorithm (GA) for training so that over a
certain time interval the agents controlling animated characters are replaced by agents from the next
generation - this would allow characters to adapt to changing or new conditions during a simulation’s
execution. There would certainly be value in evaluating whether or not this approach would improve
results.

9.3 Initial Approach
In a standard-pattern fuzzy-based navigation system there are a very large number of variables than
can be tweaked and would make good candidates for automatic training:

9.3. INITIAL APPROACH 89

• 12 fuzzy input set membership functions (categorising distance and angle to targets and ob-
stacles).

• cut-off thresholds for each of the input angles and distances

• 12 fuzzy output set mid-point values

• 36 adjustable fuzzy rules (six or seven discrete values possible per rule).

• resolution of grid-cells (size of the cells in meters)

• depth-limits of dynamic path-finding component of navigation system

The knowledge-base (KB) of a learning fuzzy system can be classified into two main component
areas for optimisation [104];

• A rule-base (RB) consisting of fuzzy inference engine rules

• A data-base (DB) consisting of fuzzy set membership functions and set scales, and in the case
of this system case grid-cell resolution and other threshold levels as well

The standard pattern fuzzy controllers have 3 inputs for distance and 3 inputs for angle for a total
of 9 rules defining a controller. There are 4 controllers in the simplest motion controller that we look
at in this thesis; obstacle avoidance steering, obstacle avoidance speed, target seeking steering, and
target seeking speed. So one of these motion control systems has a full rule-base of 36 rules in total.
For an example of rules in the rule-base; the first 3 rules might be expressed in natural language as:

1. If the obstacle is a near distance away and the obstacle is a narrow angle from the heading
then change speed to zero, and change steering to a sharp turn.

2. If the obstacle is a medium distance away and the obstacle is a narrow angle from the heading
then change speed to very slow, and change steering to a medium turn.

3. If the obstacle is a far distance away and the obstacle is a narrow angle from the heading then
change speed to zero, and change steering to a very light turn.

To limit the number of variables to optimise, and to concentrate on the most manually-intensive
of the variables, the system concentrates only on automatic training of the fuzzy inference engine
rule-base. In the initial evolutionary algorithm (EA) the entire rule set is treated as a genetic code
- this is the “Pittsburgh” approach [104, 105]. A “population” of candidate rule sets is maintained.
The evolutionary system is very rudimentary at this stage; the process of mutation for the initial
approach is a only very basic sequential tuning operation (only one step above a brute force method)
to evaluate the effectiveness of genetic algorithms for auto-tuning motion control problems.

Considering a very simple control system that has 36 different rules, each rule having only 5
possible output options, then we have 536 possible combinations of rules. If we repeat each mea-
surement a moderate 150 times then we have to make 2.1828 · 1027 measurements. Using only 30
seconds per measurement we can see that this is going to take 1.25 hours to evaluate one combi-
nation or more than 2.9 · 1023 years of computational time to evaluate the entire set. It might be
possible to reduce the number of measurements by rejecting all rule combinations that are not in a
sensible order, i.e. when steering from a moderately close object the output should not be smaller
than when steering from a far away object. Even if we do a factorial reduction thus, we still have
to make at least 4.3052 · 1016 measurements, which makes it infeasible to solve the problem using
brute-force algorithms.

There are a large number of possible combinations of rules, but it makes sense for most of these
rules to remain in sequence - therefore the approach can start with a default “reasonably good” set
of hand-made fuzzy rules, and then to attempt a tweaking evaluation on these - a “tuning” approach.

90CHAPTER 9. ON SIMULATION FRAMEWORKS FOR AUTOMATIC CALIBRATION SYSTEMS

The hypothesis is that this method, although not using a heuristic guide, might improve results
relatively quickly compared to trying all alternatives sequentially. If each rule has 5 possible outputs;
i.e. “zero” “very light”, “medium”, “sharp”, and “full” in the case of steering outputs, then we can
enumerate these as values from 0-4, and simply “tweak” a value by shifting it ±1, i.e. from a “sharp”
to “medium” turn.

A preliminary evolution process was proposed in Chapter 6 and in previous work [55]. This
stage-one algorithm is illustrated again in Figure 6.7; where the method in the figure is using the
time taken and a collision heuristic as a fitness (evaluation) function. Initially, the method is only
focused on the most basic form of rule-set tuning; note that no pre or post scaling of fuzzy set
functions takes place. We have also not yet touched upon scaling grid resolution - a much more
technically involved process that would alter the balance of the whole system - current thinking is
that if the cell resolution is changed, then all of the rules and sets would need to be recalibrated to
suit this new resolution; thus cell size changes would need to happen in-between runs of the EA.

A test-cycle of the new simulation infrastructure produced some results for the first two rule
variations by tweaking the first rule by ±1 and running a number of prototype simulations. The goal
was to build a simulation infrastructure that could generate all 70 additional ±1 rule variations for
each individual, and rank them. The best could be given a subsequent round of ±1 tweaking. This is
analogous to a depth-first search on a tree of depth 6 or 7 with <= 72 children per node, and where
evaluation of each node takes 2-3 minutes, and a large number of runs are required. The test cycle
put a character with an established set of specifications (top speeds etc.) at a random location, a set
distance from a fixed target - placed in the centre of a 3D obstacle course test environment. The idea
here was to bring the simulation testing framework up to working order and shake out any flaws in
the system.

Numerous problems were discovered as a result of this test; the largest problem being that Nvidia
180.11 video drivers for the GeForce 8800 GTX on the Ubuntu Intrepid Linux-x86 64 platform were
unstable with the graphics library; Ogre [68] would bring the entire Operating System down every
100th run or so; making the entire experiment platform very unreliable, and slow to process. An in-
terruptible single-programme-execution experiment platform (where one execution of a programme
could conduct the entire experiment) would be ideal for this kind of testing. The range and pseudo-
randomness of the experiment conditions were later improved by the addition of random initial
orientation to the learning agents (in addition to the random starting position).

The previous experiment with time-step size in this training simulation framework has shown
that the collision avoidance system scales linearly with time compression up to the 2.0x range [93].
Therefore it may be a possibility to run the training at up to double the time compression factor to
speed up the training process. Without experimenting with the concept it is hard to be confident that
training at 2.0x time compression will produce navigation rules that are equally well suited to 1.0x
operation as if they had been trained at that level; further experimentation is necessary to determine
this, but it might be advantageous if it were possible to speed up results by a factor of 2 at only a
small loss of training quality.

9.4 Preliminary Experiment

How many runs are required to obtain a reliable fitness or evaluation heuristic for a particular rule
set within the evolutionary fuzzy framework? Without this information it is not possible to proceed
sensibly with an automatic learning process. The easiest way to obtain a guideline for this vital
parameter was to run an experiment and observe the stability of the score heuristic as the number of
simulation runs increased.

This experiment was also a good trial-by-fire of the entire simulation/learning tool pipeline. To
begin with a test environment was quickly constructed using the 3D design tool. The concept was
for each vehicle to head from some point around a 300m radius in the environment towards a central
fixed navigation target. A number of obstacles of various shapes and sizes were put into this area,

9.4. PRELIMINARY EXPERIMENT 91

Fi
gu

re
9.

1:
T

he
te

st
en

vi
ro

nm
en

t
fo

r
ag

en
ts

to
na

vi
ga

te
th

ro
ug

h.
E

ac
h

ru
n

of
th

e
si

m
ul

at
io

n
st

ar
ts

th
e

T-
28

E
ve

hi
cl

e
at

a
ps

eu
do

-r
an

do
m

or
ie

nt
at

io
n

an
d

lo
ca

tio
n

30
0

m
et

er
s

fr
om

th
e

ce
nt

re
of

th
e

im
ag

e
(a

ro
un

d
th

e
pe

ri
ph

er
y

of
th

e
ou

te
r

bu
ild

in
gs

),
an

d
th

e
go

al
is

to
he

ad
to

w
ar

d
th

e
ce

nt
re

of
th

e
en

vi
ro

nm
en

t
(i

n
th

e
m

id
dl

e
of

th
e

th
re

e
la

rg
e

bu
ild

in
gs

).
T

he
la

nd
sc

ap
e

is
lit

te
re

d
w

ith
ob

st
ac

le
s;

tr
ee

s,
an

d
bu

ild
in

gs
of

va
ri

ou
s

si
ze

s.
T

he
ve

hi
cl

es
m

us
ts

ur
m

ou
nt

hi
lls

an
d

dr
iv

e
th

ro
ug

h
va

lle
ys

w
ith

ap
pr

ox
im

at
ed

ph
ys

ic
s

af
fe

ct
in

g
as

ce
nt

/d
es

ce
nt

sp
ee

d.

92CHAPTER 9. ON SIMULATION FRAMEWORKS FOR AUTOMATIC CALIBRATION SYSTEMS

and some light hills and valleys (which affect vehicle speed, but are not able to be driven around
intelligently at this stage) created. A view of the test environment is presented in Figure 9.1.

Figure 9.2: The to-scale 3D model of the T-28E vehicle with continuous tracks that was constructed
for use in the experiment. This is a good example of an animated vehicle that would be reconstructed
for a movie production or modern computer game or simulation. All of the historical performance
data is available for this vehicle, and speed, weight, tracked steering movement and other available
data is simulated.

Each run of the experiment consisted of one programme execution where one agent would use
our default (hand-crafted) knowledge-base and drive course. Post-processing would evaluate the
agent, store the result, and start another programme execution with the next agent. We used the
following parameters for all simulation runs, which were conducted on an Intel Quad-core 2.40GHz
machine with a NVIDIA GeForce 8800 GTX card:

• 800x600 graphical resolution at 32 bits-per-pixel

• 3 minute time limit

• pseudo-random initial orientation (heading adjusted within a full circle)

• pseudo-random initial position - around a 300m radius from target

• 1.0x time compression factor

• using specifications for the T-28E vehicle (see Figure 9.2 for the 3D reproduction of the vehi-
cle).

• scoring function for self-evaluation (maximising fitness heuristic)

• default, hand-crafted rule-base.

In order to evaluate the effectiveness of navigation through an environment, each agent is
awarded an heuristic score upon completion of a simulation course “run”. This score is the same as
the fitness evaluation, except that the aim is to maximise the value, rather than to approach zero. The
heuristic is a weighted combination of collision severity evaluation and the time taken to complete
the obstacle course; Equation 9.1. The entire evolutionary process hinges on the effectiveness of this
score as a fitness measure.

h = (200 − c) ∗ wc + (60.0 − T) ∗ wT (9.1)

9.5. DISCUSSION AND CONCLUSIONS 93

Where h is the heuristic score obtained, c is the cumulative mesh-interpenetration of the vehicle
with boundaries of obstacles in meters of overlap per second, based on a radii from the centre of the
vehicle and the object, and T is the total time period taken to complete the run in seconds. wc and
wT are optional weights to shift the balance of the function towards either expediency or safety, but
they were both set to 1 for the experiment.

Figure 9.3: The upper plot line is the raw fitness result, and has very little error. The lower plot is the
same result, but those runs that did not complete the entire course have been artificially penalised
with a -1 fitness score. This second plot might be a more useful optimisation process for imple-
mentations where the vehicle absolutely must reach the destination, and the first plot where obstacle
avoidance is relatively more important. Having a smaller error margin, however, will let us make an
accurate fitness assessment with fewer measurements, so we can see that it is desirable to use as few
exceptions to the fitness function as possible.

9.5 Discussion and Conclusions
It became quickly obvious that for the tuning problem brute force methods are too slow to be usable
(tweaking 5 rules is acceptable, but with 36 rules the turn-around for complete rule trial would last
1 week per character). Note that it took 48 hours to tweak each rule only ±1 for one agent (the
full compliment is ±3 or 4). Even basic guided search algorithms are too slow for this problem.
It was found that batch-driven methods, while easy to parallelise across machines, are fraught with
technical hang-ups in a 3D graphical environment, as supporting libraries occasionally hang or crash
the system when fully restarted.

In this work established a rule-of-thumb number of runs to use for evaluation in this type of
obstacle course has been found. Because this is only 20-30 runs (assuming that current problems are
fixed) it might be possible able to train continuously in real-time; i.e. training runs occur dynamically
in real-time, not as individual programme executions.

For these reasons the next iteration of this research is driven towards a new approach; single-
execution simulation architectures that can evaluate multiple, if not all 72, rule-base variations si-
multaneously (one per-agent) within one test environment. This is illustrated in Figure 9.4 with a

94CHAPTER 9. ON SIMULATION FRAMEWORKS FOR AUTOMATIC CALIBRATION SYSTEMS

Figure 9.4: A simple architecture for a dynamic real-time training system. The advantage of this ap-
proach is that a large number of rule set variations are training simultaneously within one programme
execution - with no need for training to be distributed across multiple machines. The reliability is-
sues of training are reduced, as the programme does not need to be restarted. Agents self-evaluate
after a 2-3 minute interval. An entire generation is then processed within the 30 run range which is
established - just over an hour per generation. The next question that we have to ask is - “How many
generations are required before we optimise training?” This architecture is then an intermediate step
between traditional off-line training, and intelligent agents that learn during normal execution. At
this stage only the most simple selection method is used to breed the next generation - the best agent
from a generation is used and mutated; all others are removed from the gene-pool.

9.5. DISCUSSION AND CONCLUSIONS 95

more sophisticated version of the EA diagram. This is a much more efficient approach (as used to
some extent by the rtNEAT algorithm in the NERO game). There is then a basis to time-limit indi-
viduals and create generations with breeding of results, and pruning of the weakest members. This
leads to comparison of various evolutionary methods, and it is possible to explore genetic operators
- mutation, selection, and crossover - for a more effective tuning process.

This new approach asks new questions however;

• When do we stop the training process?

• How many agents can we train at once before frame-rate performance upsets learning? Or
rather

• To what extent does simulation frame-rate affect learning?

• Can we train effectively at compressed time-steps to further increase learning efficiency?

• What is the best way to incorporate data-base tuning into this process?

• How vulnerable are we to being stuck in evolutionary minima and maxima traps?

All of these questions will have to be explored. Training with different grid sizes, and of tweak-
ing the fuzzy sets will be considered (to suit the trained rules). Would it even be possible for us to
develop the holy grail machine learning algorithm in this area - vehicles that to self-modify their
own behaviour during execution? Our future works will examine the application of genetic-fuzzy
logic hybrid algorithms to the specific areas of computer games with hostile agents, traffic simula-
tions with road structures, and crowd simulations with very high-density groups of virtual human
agents whilst moving towards a generalised auto-calibration algorithm for animated characters in 3D
environments.

96CHAPTER 9. ON SIMULATION FRAMEWORKS FOR AUTOMATIC CALIBRATION SYSTEMS

Chapter 10

A Genetic-Fuzzy System for
Optimising Motion

“It is not the strongest species that survive, nor the most intelligent, but the ones
most responsive to change.” - Charles Darwin [106]

This chapter introduces a new genetic-fuzzy system (GFS) that automates the tuning process
of rules for animated character steering. An advantage of the GFS is that it is able to adapt the
rules for steering behaviour during run time, which means that it is suitable for games and real time
simulations where the environment can change. This chapter will explore the parameter space of
the new GFS and discuss how the GFS can be implemented to run as a background process during
normal execution of a simulation.1.

10.1 Introduction
An outstanding problem with the use of fuzzy controllers for steering and moving animated char-
acters is that the controllers need to be tuned to suit each new type of agent’s combination of rôle,
physical and performance characteristics, and operating environment. This means that, while the es-
sential kernel of the system - the fuzzy decision making process - applies broadly, all the parameters
of the fuzzy systems need to be tailored to suit the peculiarities of each new type of agent; be it a
lumbering troll, a lane changing city bus, a tank surmounting a rubble strewn battlefield, or a crowd
of pedestrians [52, 89]. Building and calibrating fuzzy controllers consists of the following steps, as
according to Passino (1998) [107]:

1. Fuzzification, and defuzzification as defined earlier in this text.

2. Designing a complete set of rules that match all combinations of fuzzy input sets to fuzzy
output sets.

3. Adjusting either fuzzy sets or fuzzy rules to improve the performance of the system.

This process is very time consuming for the designer. Modifying a system by trial and error
based on test cases has taken 5-10 hours in applications. If there are various types of agent involved
in a simulation, or an agent has to cope with a large variety of different cases then the required
tuning time multiplies. There is no guarantee that hand tuned rules and sets are optimal. The fuzzy
controllers are also not able to adapt to any change to the environment after tuning. Specific aims of
this chapter are:

1 A video of part of the dynamic genetic-fuzzy system experiment described in this chapter is available at http://
antongerdelan.net/videos.html under the heading Dynamic Genetic-Fuzzy System experiment

97

http://antongerdelan.net/videos.html
http://antongerdelan.net/videos.html

98 CHAPTER 10. A GENETIC-FUZZY SYSTEM FOR OPTIMISING MOTION

1. To automate the tuning process of fuzzy controllers used for steering and moving agents in a
3D simulation, saving developer time and improving manually calibrated controllers.

2. To design an architecture that allows this tuning process to happen in real time, giving the
agents an adaptive quality.

3. To enable the use of available multi core hardware during the calibration process.

The novel contribution of this work is that it provides an automatic calibration mechanism for
fuzzy controllers specific to 3D animated agents. This gives fuzzy controllers some of the advantages
of the other 3D game evolutionary systems, but does not share the disadvantage of being a closed
system “black box”, meaning that the rules evolved by the system are visible and easily manipulated
by a user during the process. Future work will analyse the performance of this approach within the
broad domain of agent steering and movement control.

10.2 Related Work
Optimisation of intelligent agents’ behaviour using genetic or other EAs is usually performed in
staged iterations; one iteration per generation. This has been used to evolve bipedal animated char-
acter motion with promising results [108] Each generation will be evaluated by running the full
generation’s complement of individuals through a contrived environment. These iterations will con-
tinue until a desired fitness or arbitrary generation evaluation limit has been reached. Complete
training is usually performed prior to use of the agent in its intended environment, and then no fur-
ther optimisation take place. This commonly used training paradigm provides a solution to the time
intensive design problem, but it does not address the problem of dealing with varied or changing
environments.

An alternative approach is employed in the 3D graphical NERO game [43,45]. A key innovation
of rtNEAT as used in NERO is that the evolutionary training process happens continuously in real
time. Rather than running the agents through staged, repeatable experiments of fixed length, the
characters are given a time limit of about 1 minute, during which they are continuously evaluated,
after which they are destroyed and replaced by an agent of the next generation. This speed up of the
evolutionary process allows the GA to run in real time during simulation execution.

To further speed up the evolutionary process, NERO distributes training up to a large group (50)
of the same type of character simultaneously (each one representing an individual of the genera-
tion). Although this work focuses on fuzzy systems rather than NNs, it is possible to build on the
continuous evaluation paradigm, which addresses the problem of adapting training to a changing
environment. The parallel approach to reduce training time is also incorporated. Whilst NERO’s
“human in the loop” is suitable for directors or game designers that want to interactively direct the
evolving behaviour, this work aims to optimise existing steering behaviour whilst minimising human
effort, and so aims to fully automate the evaluation process.

GFS hybrids combine a GA with fuzzy controllers, and have long been used to solve optimisation
problems inherent in fuzzy systems by evolving the fuzzy set functions or through tuning of fuzzy
rules [104]. However, each new GFS requires a unique, problem dependent architecture and fitness
function. Genetic-Fuzzy algorithms have been used for training mobile robots to avoid obstacles.
This application domain is inherently similar to animated agent steering, and the GFS approach has
been shown to generate reliable fuzzy rules [109]. Although a GFS has been recently proposed for
autonomous agent motion in very basic stochastic applications [110], using it for automatic train-
ing of 3D animated character navigation is a new approach which requires a new GFS framework
specific to the domain.

Table 10.1 provides a comparative overview of features of different agent steering approaches.
The basic fuzzy system is manually optimised, the GNN is trained in staged batches prior to use, and
the final two systems are trained dynamically in real-time. An important aspect of differentiation

10.3. BACKGROUND: FUZZY CONTROLLERS IN AGENT STEERING 99

Fuzzy GNN rtNEAT GFS
Training manual batch online online
Black box no yes yes no
Adaptive no no yes yes
Interactive no no yes no

Table 10.1: Comparison of features of agent control systems. A fuzzy controller is compared to a
genetic-neural network, the rtNEAT algorithm, and a genetic-fuzzy system.

between approaches using EAs (offline GNN, rtNEAT and GFS) is that those based on NNs are
“black box” systems, i.e. the rules evolved as ANNs are not easily visible or manipulated outside
the training process by a human designer. The rtNEAT algorithm as implemented in NERO counters
this problem by allowing the designer to interact during the training process, but this decreases the
automation.

10.3 Background: Fuzzy Controllers in Agent Steering

Figure 10.1: These fuzzy input set functions take a real angle to an obstacle in radians, and fuzzify
this into either full or partial membership of the narrow (0 to 0.57 rad), mid (0.35 to 0.84 rad) and
wide (> 0.84 rad) fuzzy angle values.

The primary use of fuzzy controllers is to simplify an agent’s understanding of its environment.
Instead of classifying distances and angles in terms of meters and degrees, for example, classifying
angles in human-like terms as being members of fuzzy sets [107]. For example, we use narrow,
mid or wide and distance sets near, medium or far to define a car’s fuzzy sets. An example of
this procedure is illustrated in Figure 10.1. For a spatial representation of this classification see
Figure 10.2, where in this case the agent at the bottom of the image is classifying the angle to an
obstacle from its heading direction in fuzzy terms; narrow, mid, and wide. Objects covered by more
than one set are considered to be a partial member of both; thus the obstacle in the image is at a
partially mid and partially wide fuzzy angle.

Once perceptions have been simplified into discrete forms thus, it is possible to perform some
human-like reasoning by matching inputs with a fuzzy rule. The result of each rule is also a fuzzy
set, but each one of these values is assigned a single midpoint value (also known as a singleton
value). For example, a sharp turn might have a mid value of 2rad · s−1, and a very light turn might
have a mid value of 0.5rad · s−1. One such fuzzy rule is:

“If a car is near and the angle to it is narrow then steer sharply away.”

100 CHAPTER 10. A GENETIC-FUZZY SYSTEM FOR OPTIMISING MOTION

Figure 10.2: Overlapping fuzzy input sets in a spatial example. The agent has classified an obstacle
as a partial member of both mid and wide angles from its heading direction.

narrow mid wide
near sharp medium very light

medium medium very light zero
far very light zero zero

Table 10.2: Rules for change to steering in the obstacle avoidance component of a simulated car.

Most intelligent agent systems would use a mathematical function to match inputs to outputs,
but fuzzy systems can use a table to look up our rules very quickly. This process, which is known
as a Fuzzy Inference Engine or Fuzzy Associative Memory Matrix matches each fuzzy distance and
angle to fuzzy output values. As an example, the inference engine that being used for change to
steering in the route following component of a simulated car in the traffic simulation is given in
Table 10.2, where output fuzzy steering adjustments are given for each fuzzy input distances and
angle combination.

The basic fuzzy decision making architecture used is illustrated in Figure 10.3. Complex fuzzy
logic architectures for movie characters might contain trees of thousands of cascading fuzzy decision
making nodes of this type, but the systems considered in this work are considerably simpler case and
comprise only two of these fuzzy decision making nodes:

• A reactive obstacle avoidance fuzzy controller

• A target seeking or route following fuzzy controller

Using both of the decision making modules, environment elements (obstacles and destinations)
are fuzzified into input values for angle and distance. Once these have been obtained, the fuzzy
distances near (N), medium (M), and far (F) are matched to the fuzzy angles narrow (N), mid (M),
and wide (W) in a rule table called a FAMM. 3 sets for each input is sufficient (which gives us a
3×3 rule table), and that the larger, more detailed FAMMs are superfluous in this kind of application,

10.4. ARCHITECTURE OF THE GFS 101

Figure 10.3: The component architecture has two fuzzy perception inputs (angle and distance), a
3×3 rule table which matches input fuzzy sets to output fuzzy sets, and two fuzzy motion defuzzifiers
which convert fuzzy outputs into real speed and steering instructions.

but system is using a 5-set fuzzy output value for greater rule flexibility. The FAMM contains the
complete matching for every input, and provides an output fuzzy set for each rule, for both change
in steering, and for desired speed. Therefore, with 2 fuzzy decision making modules that have 3× 3
fuzzy inputs each with 18 combinations of inputs, and as each of these combinations is used for 2
fuzzy outputs then in total the fuzzy system requires 36 fuzzy rules.

10.4 Architecture of the GFS
In a fuzzy system all of the problem specific variables and parameters are grouped into what is called
a fuzzy Knowledge Base (KB), which consists of two distinct parts:

• the Data Base (DB), which determines the size and shape of fuzzy set functions (used for
fuzzification and defuzzification).

• the Rule Base (RB), which contains a list matching every possible combination of fuzzy inputs
to a valid fuzzy output.

A GFS is designed to optimise either the scale and shape of set functions in the DB or to tune the
rules in the RB, as simultaneous optimisation is conflicting [104]. This architecture only optimises
the RB, and not the fuzzy DB as output fuzzy values can be treated as discrete numbers, and are
therefore easy to increment or decrement during mutation. As DB optimisation is a more complex
operation, scaling and modification to fuzzy set functions will a the subject of future works.

One drawback of existing GA models is that they require extensive changes to simulation infras-
tructures when implemented directly in code. Therefore this chapter’s GA is designed with a view
to making minimal intrusions on the target simulation. This work separates the GA from the simu-
lation architecture with only a small simulation plug-in used to interface with an external GA. This
approach separates the evaluation and breeding functions into separate programmes, leaving only the
performance logging and rule distribution functions running as part of the simulation. This means
that the whole architecture has only a very small dependency on the target simulation’s programming
language and implementation.

Our simulation plug-in is illustrated in Figure 10.4. Referring to the figure, a “Run Manager”
(RM in the figure) component loads all available chromosomes into the simulation on programme
execution. During run time it distributes these to the agents, and once all runs are completed it looks

102 CHAPTER 10. A GENETIC-FUZZY SYSTEM FOR OPTIMISING MOTION

Figure 10.4: Simulation plug-in architecture. The “Run Manager” (RM) intermittently loads new
rules from the gene pool. The trucks represent the agents, which append their performance to logs
at small mileage intervals.

for a new generation of rule sets to load and distribute on the fly. The count of runs completed
for each individual are also recorded so that if the game or simulation is stopped evaluation can
resume from the same point. As indicated in the figure, agents log their performance (fitness function
components) at regular mileage intervals. These can then be compiled at a later stage for fitness
evaluation. This method allows continuous evaluation that is interruptible, which makes it ideal
for computer games where a game might not last for an entire evaluation cycle. Because the runs
are logged incrementally the training can be halted and resumed at a later stage with very little
loss of training time. Using flat files as input and output makes negligible impact on simulation
performance. A network loop could easily be used in place of file I/O to reduce processing time, or
to distribute training across multiple machines.

Figure 10.5: Operation of the breeding tool chain. Firstly fitness scores are created from agents’
“mileage” logs. Individuals are ranked in order of fitness. Genetic operators are applied to create a
new generation. This is sent to the simulation.

10.4. ARCHITECTURE OF THE GFS 103

The actual breeding of new generations based on genetic operators is handled in an external
pipeline, as illustrated in Figure 10.5. This pipeline is independent of the implementation of the
target simulation. The CPU demands of the whole system are therefore very low, as the breeding
pipeline does not need to remain in-synch with the updates of the simulation. It also readily takes
advantage of any available multi core hardware as it occupies a separate operating system process.

This separate tool chain reads in all of the logged evaluation results output by the simulation and
compiles them into complete runs. The runs are then evaluated with a fitness function, and when
all of the runs for an individual are compiled, then that individual is ranked according to its fitness
score. The gene pool in the architecture retains the best individuals from earlier generations, and
new individuals are ranked against these.

As for genetic operators, the selection operator takes the best p parent individuals from the
top of the fitness rank and these are used for breeding the new generation. For the sake of broad
applicability (so that the algorithm functions consistently even when very small population sizes are
experimented with) only a value of p = 2 has been used in experiments. The parent chromosomes
are then crossed over to produce a population size of n children. The crossover mechanism moves
along the chromosome one rule at a time and has a set 1

p probability of choosing either parent’s
output fuzzy set for each rule. Each rule has an r (“radiation level”) probability of being mutated by
0 to m fuzzy output levels. This work attempts to exhaustively explore the complete range each of
these GA variables.

The fitness function that used for initial experiments has been designed to be as simple as pos-
sible. It combines two heuristics; firstly a “crash rating” - the mean penetration or intersection of
the character with obstacles during the run in meters, and secondly a heuristic representing the mean
speed of the vehicle out of its maximum desired speed given current conditions. Each of the equation
components are multiplied by a weighting factor which can be used to reward obstacle avoidance
behaviour or expediency to a higher or lower degree. For initial experiments these weights have been
set to 1. A perfect fitness is a score of 0 so the aim is to minimise the fitness. The fitness function is
given in Equation 10.1 as the fitness awarded to an individual i:

fitnessi = c̄2 ∗ wc + (1 − v̄

vmax
) ∗ wv (10.1)

Where c̄ represents the crash rating, and v represents the speed of the vehicle. The weights for the
crash rating heuristic and speed heuristic are represented by wc and wv , respectively. The equation
is representing the crash heuristic in a squared form, as distance comparisons in most simulations
are usually squared to avoid use of the CPU expensive square root operator. The speed heuristic
takes the mean speed of the vehicle over the maximum desirable speed as given by the environment
limitations or vehicle’s top speed, i.e., the ideal speed, vmax. For an example fitness evaluation, if
we have a crash rating of 0.4m2 and an average speed of 20 out of an ideal 30k ·h−1, then we award
the individual a fitness of 0.7333.

The mapping of fuzzy controllers to a genetic representation (chromosome) string of 36 values
is given in Figure 10.6. There are 4 rule tables in the most system used in this chapter; target seeking
steering, target seeking throttle, obstacle avoidance steering, obstacle avoidance throttle. We need to
have a fuzzy output value for every possible combination of inputs (c); these are represented as rules
r0 to r35. If we enumerate fuzzy output values from fuzzy values, ”zero”, ”light turn”, ”medium
turn”, ”sharp turn”, ”full turn” in the case of steering, into corresponding integers 0, 1, 2, 3, and 4,
then we can express our chromosome as an array of digits (d), which is very convenient for use by
genetic operators. Thus the chromosome that we are using in this chapter has a length of 36 values.
Each gene’s value is in the range 0-5. Each gene represents the output of a fuzzy rule, and we know
which rule it is because the chromosome is arranged in a fixed order. The figure shows how the first
9 values (r0 to r8) are taken in order from the first controller’s rule table.

104 CHAPTER 10. A GENETIC-FUZZY SYSTEM FOR OPTIMISING MOTION

Figure 10.6: The illustration shows how fuzzy input values (a) are mapped to a 3x3 fuzzy rule tables
(b) and finally to a chromosome as a string of digits (d).

10.5 Benchmarking the Genetic Algorithm Component

To help to understand the complexity of the problem, and also illustrate the evolutionary process, we
first can benchmark the genetic algorithm in a controlled simulation by keeping the fuzzy processing
constant. The best way to visualise if the chromosome is actually converging towards an optimum or
not is to arbitrarily define a known optimal chromosome. We can say that our optimal chromosome
is:

000000000000000000000000000000000000 f i t n e s s : 0

The chromosome above is 36 genes, or rules, in length. Each digit defines the output of a fuzzy
rule. The order of the genes is fixed as we are only storing the output values of each. We can measure
the fitness of each individual as the sum of differences of each gene from the optimal. Therefore the
optimal chromosome has a fitness score of 0. For example, a chromosome that is the same as the
optimal, except the first two digits are 2 and 1, respectively, would have a fitness value of 3.

To start the evolutionary process we can seed the gene-pool with 2 randomly generated parents.
We will repeat the process 10 times to produce a measurement of error, but we will print just selected
chromosomes from the first run of the process rather than the whole set. The seeding chromosomes
from the first set are:

302040404224144203011100213022344032 f i t n e s s : 68
210030022302343040042212001000144142 f i t n e s s : 56

Using some default parameters; a population size of 10, 2 clones per generation, 2 parents se-
lected from each generation, a gene mutation probability of 0.3, and a mutation range of ±5 then we
can run an initial benchmarking experiment to observe the genetic algorithm in action. We can print
the best chromosome of the first run for selected generations to help to illustrate the process. As we

10.6. EXPERIMENTS AND RESULTS 105

Generation Chromosome
5 003240122044101410201004000020402030
6 003020002032013220200030100000103030
7 002031013031004011110133100003211030
8 012011000042004010100022300002110210
9 012011000042004010100022300002110210
10 014110000242004010400002310004000230
11 204100100141014001011010001000313200
12 204000100042002010101001000022011101
13 114020000042102210101000101222012101
14 014000000032002000130003100012200001
15 014000000032002000130003100012200001
25 102011020140001020011000100002103000
50 200000000010003000023001030020200000
75 021011000000000000000000001031001000
100 012000000100001000000000001010001001
200 000000100000000110000100021000000000
500 000000000001000100000010011000000000
999 000001000000000100000000000001000010

Table 10.3: The most-fit chromosomes from selected generations in an evolutionary run. The chro-
mosomes are converging towards an optimal individual of all zeros.

will illustrate in a graph shortly, the evolutionary process follows a law of diminishing returns, so
the following generations are printed at increasing intervals:

As we can see in Table 10.3, by 1000 generations we have arrived at an individual with a fit-
ness of 4, very close to optimal. The improvement to fitness of the whole process is illustrated in
Figure 10.7. So we can see that the evolutionary does work quite effectively, especially in the first
few generations. The question now is; can we make the learning process faster by using different
parameters (population size etc.)?

10.6 Experiments and Results

In order to establish a range of guideline parameters for implementation of the GFS, a range of ex-
periments to exhaustively explore the larger part of the parameter space of the GA has been designed.

All of the following experiments were conducted in a 3D graphical simulation, where vehicles
traversed an obstacle strewn environment similar to that found in many modern computer games. The
vehicles were driven by a simple physics simulation of braking, acceleration, turning friction, hill
climbing and descent. Thus, the fuzzy controlled agents had to perceive and operate in a relatively
complex environment using a very simple fuzzy system. It was found that it was possible to quite
comfortably distribute training over 40 agents simultaneously on an Intel Core2 Quad CPU 2.40GHz
desktop machine with a Nvidia GeForce 8800 GTX card without adversely affecting the frame rate
of the simulation or overly cluttering the test environment with moving vehicles.

At the start of each experiment agent-controlled vehicles were randomly scattered around the
landscape, and continuously given pseudo-random way points to move to. To evaluate each agent
the fitness function as introduced in the previous section was used. As depicted in Figure 10.8 the
vehicles had to avoid a large variety of shapes and sizes of static and dynamic obstacle, including
long walls, and other moving vehicles, whilst being forced to move through steep craters, hills, and
flat areas.

The simulation was not restarted between evaluation runs, but rather the new runs were awarded
randomly to available characters in a continuous fashion. All of the experiments started all of the
agents with the same default hand crafted fuzzy RB, which was capable of motion but could be

106 CHAPTER 10. A GENETIC-FUZZY SYSTEM FOR OPTIMISING MOTION

Figure 10.7: The graph shows us the learning curve, or improvement to fitness, of the genetic al-
gorithm component in a controlled benchmarking experiment where all other factors have been held
constant, and fitness is the sum of differences of a chromosome from a known optimal chromosome.

improved, i.e., were using a “rule base tuning” approach. The first experiment was designed to
establish how many runs were required to evaluate each individual reliably, a baseline which would
use in further experiments. Subsequent experiments evaluated the GA’s variables: mutation range
(m), where each fuzzy output value to be mutated would be adjusted ±m levels, probability of gene
mutation (r), and population size (n).

The first experiment was designed to find the ideal probability of mutation r for each gene in the
chromosome for each new individual created. All of the other GA variables were kept constant, with
mutation level m = 3, and population size n = 4. As this experiment was evolving the rule base
during a continuous simulation, a control case of r = 0 was included to observe how the changing
condition of the simulation affected the fitness evaluation itself.

The experiment was run at several different levels of mutation probability, and the results of
this are presented in Figure 10.9. The control case showed that the simulation stabilised after 3
generations as the characters tended to spread themselves further apart. At this point a base fitness
level of 0.86 is found. The extreme cases r = 10 and r = 80 were slowest learners, with all
results tending to a local minimum around a fitness of 0.3. Only r = 20 passed this minimum
by 45 generations. Overall the results indicate that the GA significantly improved fitness over the
control case. The difference in the rate of improvement to fitness made by probability of mutation is
marginal, with best results at r = 20.

The next experiment was designed to explore the parameter space of the mutation level m. It
was assumed that changing the m variable would make a bigger difference to fitness than other
parameters, and that higher mutation levels would pass minima encountered at lower levels. The
experiment conditions were the same as in the earlier experiment, but with r held constant at 20%.
The results of are experiment are presented in Figure 10.10. Contrary to the assumption, it was
found that lower mutation levels of 1-2 were adequate for rapidly tuning the RB. All of the different
levels were trapped in the familiar 0.3 local minimum of the previous experiment, with only m = 3
passing this within 50 generations.

10.6. EXPERIMENTS AND RESULTS 107

Fi
gu

re
10

.8
:

V
eh

ic
le

s
un

de
rt

he
co

nt
ro

lo
ft

he
G

FS
m

ov
e

th
ro

ug
h

th
e

ob
st

ac
le

-s
tr

ew
n

te
st

en
vi

ro
nm

en
t.

E
ac

h
ve

hi
cl

e
is

be
in

g
dr

iv
en

by
a

di
ff

er
en

ti
nd

iv
id

ua
l

fr
om

th
e

ge
ne

-p
oo

lw
hi

ch
m

ea
ns

so
m

e
ve

hi
cl

es
m

ay
ha

ve
a

di
ff

er
en

tr
ul

e-
ba

se
,t

hu
s

th
e

ve
hi

cl
es

pi
ct

ur
ed

al
lh

av
e

a
co

m
m

on
de

st
in

at
io

n
bu

th
av

e
sp

lit
in

to
tw

o
st

re
am

s
of

m
ot

io
n

(o
ra

ng
e

pa
th

s)
to

m
ov

e
th

ro
ug

h
th

e
tw

o
ob

st
ac

le
s

fie
ld

s.
A

s
ea

ch
ob

st
ac

le
is

ap
pr

oa
ch

ed
an

d
be

co
m

es
th

e
“n

ea
re

st
ob

st
ac

le
”

th
e

ve
hi

cl
es

m
ot

io
n

is
re

pu
ls

ed
ar

ou
nd

it;
as

sh
ow

n
by

th
e

sp
he

ri
ca

ls
ha

di
ng

ar
ou

nd
se

le
ct

ed
ob

st
ac

le
s.

T
he

en
vi

ro
nm

en
tf

ea
tu

re
s

lo
ng

st
ri

ng
s

of
ob

st
ac

le
s

in
di

ff
er

en
tc

on
fig

ur
at

io
ns

.

108 CHAPTER 10. A GENETIC-FUZZY SYSTEM FOR OPTIMISING MOTION

Figure 10.9: The graph compares the effect different probabilities of each gene being mutated (r)
have on fitness. A control plot of r = 0 shows the change to fitness evaluation with no evolution.
The various probability plots are clustered together, indicating that r has little effect.

10.6. EXPERIMENTS AND RESULTS 109

Figure 10.10: The three different plots here show points where fitness for three different mutation
ranges (m) improved. When a gene is mutated, the output fuzzy set for a rule is modified between
the range of ±m fuzzy set values.

110 CHAPTER 10. A GENETIC-FUZZY SYSTEM FOR OPTIMISING MOTION

An important observation of mutation levels is that, where m was set to higher levels of 5 or 6,
a large proportion of the individuals produced were completely unsuitable and remained stationary
or vibrating. The next step therefore, was to develop a special condition to quickly identify and
eliminate these individuals in order to continue the experiment. Although m = 6 was capable of
making very large jumps in fitness (generation 15 in Figure 10.10 for example), it can also produce a
series of generations with no improvement and many unsuitable agents; it took 15 generations before
any significant improvement was made to fitness. This behaviour would be highly undesirable in an
interactive computer game, so it can be said that, whilst high mutation levels may allow pre trained
RBs to break out of minima over a very large number of generations, for run time training where
consistently good motion is desired, a RB tuning approach is better, with mutation level set relatively
low (between 1 − 3 in the GFS).

Figure 10.11: Shown here are rates of fitness improvement per evaluated individuals for different
population sizes (n). We can see that the bigger n sizes evolve more slowly, with n = 4 being the
fastest.

Our last experiment was designed to explore the population size (n) parameter space, specifically
to find the population size per generation that allows us to improve the fitness score most rapidly.
It was assumed that larger population sizes would improve the rate of fitness improvement beyond
the very low default of n = 4. The results are presented in Figure 10.11, where we can see a clear
indication that bigger population sizes evolve more slowly. Of course, where the number of agents
being trained in parallel can train more than an entire generation of runs simultaneously then it is
possible to increase the population size to scale.

This results of this experiment raise the question - should the number of parents scale with the

10.6. EXPERIMENTS AND RESULTS 111

Figure 10.12: Shown here is the effect of increasing the number of parents to scale up to the largest
population size from the previous experiment. Our default number of 2 parents bears resemblance to
the learning curve from our initial benchmark, which we would expect. We can see that increasing
the number of parents for this problem does not improve the learning curve, but in fact forces it to
plateau too early. Interestingly, having only one parent (eliminating the cross-over mechanism alto-
gether) did not adversely affect the learning curve. We can speculate that this might be because we
are using a very highly selective evolutionary process for optimising to one specific solution, rather
than to create a broad gene-pool for solving a range of problems, and resistant to environmental
change, as we would expect in a biological evolutionary process.

112 CHAPTER 10. A GENETIC-FUZZY SYSTEM FOR OPTIMISING MOTION

Genetic Parameter Guideline Value
Minimum Runs 30
Population Size n 4
Mutation Level m ±3
Mutation Chance r 20%

Table 10.4: Baseline genetic parameters for GFS
size of the population? We can now benchmark if this is the case or not. Certainly, if it were the case
it would skew our above results for population size. If we take the largest population size examined
in the experiment (200), then we can process the genetic algorithm with various numbers of parents
and compare the learning curves. Figure 10.12 gives us the results of this series of benchmarks.
Firstly, our default value of 2 parents gives us a good learning curve, very similar to that obtained
in the initial benchmark, Figure 10.7, which we would expect. Higher numbers of parents; 4, 10,
and 20, all plateaued at worse fitness levels. We can see from the larger error bars on those plots
that there was more distribution of results for these values. The most interesting information in the
graph is that if we look at the plot for p = 1, we can see that it is almost identical to the 2-parent
plot. At face value this suggests that the cross-over mechanism isn’t useful at all for this particular
problem space. We can conclude from the figure that scaling the number of parents with the size
of the population is clearly not an advantage, in fact, the plots show us that increasing the number
of parents is a disadvantage. However, it may be valuable to have multiple parents in a population
where there is more than one optimal solution. In this case we might be able to use additional parents
to converge to multiple local maxima simultaneously.

10.7 Conclusions and Future Works
In this chapter it was found that the GFS architecture can improve the reactive navigation behaviour
of 3D animated characters over an initial hand trained set, assuming that the fitness function is a valid
measure of performance. This can be seen in Figure 10.9, where all of the evolved results surpass
the fitness of the control case. This suggests that the GFS is a useful tool for reducing the human
calibration time requirements of agents using fuzzy controllers. It was also found that a GFS can
operate dynamically, in a real time simulation, and evolve with a small population size. This offers
an alternative to other EAs for games, and suggests that it might be capable of tuning intelligent
agents that are based on much more complex fuzzy systems.

In addition to presenting the complete GFS architecture, a range of developer baseline parameters
have been identified for use. These are presented in Table 10.4.

The next steps will be to benchmark performance of the GFS compared to other agent steering
systems, and to investigate application of the GFS to a broader range of animated character types,
specifically city road traffic and pedestrians, and to investigate the capability of the GFS to adapt
to changing conditions in real-time. The feasibility of tune multiple complex fuzzy systems in real
time will also be investigated.

Chapter 11

Mechanix: Vehicle Mechanical
Simulation

This chapter describes a vehicle mechanical simulation system. The system has been built as a
layer above the popular rigid body dynamics engine Open Dynamics Engine (ODE), which is used
for collision handling and integration of classical mechanics. After reading this chapter, a reader
familiar with ODE or other rigid body physics libraries should be able to recreate the mechanical
simulation to the same specifications. The aim of the system is to provide a level of mechanical
realism high enough to reproduce accurate acoustic and graphical representations of real vehicles
in real-time, using measured performance data and known mechanical specifications. Rigid body
dynamics does not represent all of the forces involved in vehicle physics, so additional physics mod-
els used are discussed. Methods for 3D visualisation of both physics primitives and high-quality
graphical meshes are discussed, and details of algorithms for animating flexible body vehicles (such
as “bendy” articulated buses, and Caterpillar tracks) using only rigid body movements are also pro-
vided. Special consideration has been given to reproducing realistic 3D audio accurately, and the
mechanical requirements for accurate audio reproduction are also discussed here.1.

11.1 Overview of Architecture

The simulation concept is a vehicle mechanical simulation and rigid-body physics system. The
mechanical simulation model has been built from scratch but is wrapped over the ODE for integrating
classical mechanics (basic physics) and collision handling.

Peripherals

Simulation Visualisation
Mechanix

physics
timestep

graphics
audio

coupling

keyboard
mouse

model

Figure 11.1: Loosely coupled simulation architecture. The layers do not communicate directly. The
central “Mechanix” programme handles interaction.

1Selected videos of the mechanical simulation in use are available at http://antongerdelan.net/videos.
html under the heading “Mechanix” mechanical simulation

113

http://antongerdelan.net/videos.html
http://antongerdelan.net/videos.html

114 CHAPTER 11. MECHANIX: VEHICLE MECHANICAL SIMULATION

The architecture used for simulation is a loosely coupled approach. The main programme,
“Mechanix”, performs the task of coupling together the different components (see Figure 11.1).
There are three basic layers;

1. visualisation / auralisation

2. user input

3. mathematical models of the world

User input is limited to moving the viewpoint, initiating demo recording, and changing the time-
step of the main simulation (represented by the dashed arrow in the figure). The layers do not
directly interact with each other, and are thus modular. Each layer component has a somewhat
abstracted interface wrapper, so that the back-end libraries can be interchanged but the common
interface retained.

The Mechanix programme itself is simply a main loop that makes application-programming
interface (API) calls to each wrapper and swaps information between them. Supported back-end
libraries for graphical visualisation are Ogre3D and Irrlicht. Ogre3D and Irrlicht are both high-
level graphics libraries that provide an abstract interface to either Open Graphics Library (OpenGL)
or Direct3D. They are both open-source and support multiple platforms. Additionally, a number
of scripting functions are provided by both libraries so that various high-level graphical shading,
texturing, and post-processing techniques can be quickly written as scripts. Bindings for various
languages are available for each, but the model in this chapter is using the native C++.

The simulation supports and encapsulates both Fmod Ex and Open Audio Library (OpenAL).
Both libraries provide a range of sound file loading and playback functionality based on the concept
of a 3D “listener” which has a definite world position, orientation, and velocity. Sound sources can
then be played with 3D effects such as left-right headphone panning, and the Doppler effect. Ope-
nAL is the universally available open-source 3D audio library with support for multiple platforms.
FMod Ex is a closed-source library but provides inbuilt support for more audio formats and 3D
audio techniques, and wider platform support than Open AL. The audio module built for this sim-
ulation is abstracted at a high enough level to support both libraries, and provides some additional
vehicle-specific 3D audio algorithms.

Again, with Input libraries, both Object Oriented Input System (OIS) and Irrlicht can be used
for keyboard and mouse input. Input capture is somewhat tied to the graphics libraries. The Irrlicht
engine has its own event-driven input system, and Ogre3D tends to use the OIS system. It is possible
to replace these systems with another, perhaps more fully-featured, input library such as SDL, but it
has been more convenient to simply wrap the functionality of both of these default choices.

ODE is used to represent solid bodies in the environment as a collection of jointed primitives
(spheres, capsules, and boxes). It is a somewhat stable rigid body dynamics (covering the basic
physics of classical mechanics) integrator. Performance is comparable to other physics libraries, but
ODE is open-source and supports most platforms. In the simulation, the mechanical calculations
(gears, engine torques etc.) are used to apply forces to the rigid bodies which are handled by ODE.
The ODE library then calculates interactions between these bodies, including collisions (crashes),
contact with road surface, basic static friction (rolling friction is calculated at the mechanical level),
slipping, and bouncing. Every frame the current state (orientation and position) of each rigid body
is read, and this is used to drive the more complex 3D graphical objects in the scene.

The mechanical operations of vehicles; torque curves, gear ratios, some spring calculations,
mechanical frictions, etc. are all custom-built for this simulation. It is perhaps worth noting here
that the mechanical system is also a detachable module (called libMechanix), that can be plugged
into other projects with no dependencies. It is important to note the distinction between the rôle of
ODE, which is used only for collisions, some spring calculations, and joints between bodies, and
libMechanix, which tackles all of the higher-level workings of cars. The mechanical library is the
critical component in the simulation (hence “Mechanix” as the name of the simulation), and most of
this chapter is spent discussing the mechanical models used in it.

11.2. VISUALISATION 115

The normal operation of the simulation system, as interactions between library wrappers in one
time-step can therefore be summarised as in Algorithm 1, below.

Algorithm 1 Interactions between the simulation and library wrappers (in bold font) in each time
step.

loop
User input wrapper: capture input.
Graphics wrapper: move viewpoint based on captured input.
Audio wrapper: move listener based on captured input.
Mechanical module: change gear, brake, and accelerator controls based on user input or auto-
matic system.
Mechanical module: calculate engine torque, gear ratios, brakes, resistances, and final drive
torque.
Physics wrapper: apply forces to rigid bodies (i.e. wheels of vehicles) using drive torque etc.
Physics wrapper: calculate contacts and collisions (calculate several steps of the physics inte-
grator).
Physics wrapper: get new state of each rigid body.
Audio wrapper: update listener and sound sources with rigid body positions, orientations, and
velocities.
Graphics wrapper: update viewpoint and visible objects with rigid body positions, orienta-
tions, and velocities.
Audio wrapper: playback audio.
Graphics wrapper: render graphics.

end loop

If the user is driving the car then the camera can also be updated based on the state of the car’s
rigid body.

Additionally, the simulation can run with audio, video, and input disabled, but the physics func-
tionality is still required. The main simulation model can run as a factor of wall-clock time (real-
time) or in time steps of a fixed size for more accurate simulation or for smooth demo recording.

The appendices to this thesis tabulate the variables used in this model with corresponding values
used in simulation. Table B.1 provides all of the mechanical-physical values required for creating a
vehicle using this system.

11.2 Visualisation
Advances in computer graphics hardware allow us to use a number of advanced rendering techniques
to increase the realism of rendering, with the expensive computation of these techniques done on the
specialised graphics processing unit (GPU) rather than on the CPU. For realistic rendering both
custom shaders (small scripted programmes that run on the GPU) and compositors (post-processing
programmes that modify the final 2D screen image) are used. In addition to realistic rendering
a method for visualising the underlying rigid body primitives, which are considerably simplified
representations of vehicle geometry, has been devised to observe the computed dynamics of physics-
based interactions, which subtly differ from the final rendered results.

Whilst graphics hardware has become very powerful, simulations tend towards rendering large
number of low-complexity meshes, each one of which stacks up on the CPU before it reaches the
graphics hardware. The major graphical design challenge is therefore to reduce the number of indi-
vidual draw operations by combining meshes or using a level of detail (LOD) approach to simplify
or hide objects out of camera focus.

Rigid-body interactions (contact computation) are computationally expensive. Physical repre-
sentations of vehicles are therefore simplified as much as possible to reduce the number of inter-

116 CHAPTER 11. MECHANIX: VEHICLE MECHANICAL SIMULATION

Figure
11.2:V

iew
s

ofa
sim

ulated
W

illys
M

B
jeep.T

he
top

row
visualises

the
jeep’s

approxim
ated

geom
etric

shape
(outergrey

cuboid)and
m

ass
distribution

(innerorange
cuboid).T

he
w

heelsare
approxim

ated
asgeom

etric
spheresw

ith
uniform

ly
distributed

m
ass.T

he
bottom

row
isthe

sam
e

jeep’sfinalappearance
using

a
3D

m
esh.

11.2. VISUALISATION 117

actions calculated. Simulated vehicles are typically represented as a single box-shaped body, and
several spherical “wheels” (which generally only require one contact per wheel). Figure 11.2 gives
us a comparison between a graphical model of a jeep, and its simplified rigid-body representation.
The Mechanix system has a set of pre-defined graphical primitives (spheres, boxes, etc.) which are
scaled to the size of the rigid-body representation. The primitives can be semi-transparent to allow
internal components, or bodies behind the vehicle to be observed. This gives us a method for directly
debugging what interactions are happening in the dynamics simulation. We can see in the figure that
the graphical shape of the jeep does not directly correspond to the shape of the rigid-body vehicle;
particularly the width of the wheels and the height of the body. A scripted interface is provided to
allow both graphical and physical models to be displayed simultaneously. This is useful where the
differences between physical and graphical model need to be determined, or where the graphical
model needs to be scaled to correct dimensions.

Using the Ogre3D library it is possible to define computer graphics shaders as material script
templates [68]. The different car components can be split into different material scripts; allowing
different surfaces of a vehicle to have their own shaders and rendering properties.

Figure 11.3: Before (above) and after (below) effect of the car paint shader. Original image Tom
Van Eyck. Image used with permission.

The most important aspect of realistic car rendering is the modelling of car paint; which tends to
be glossy and highly-reflective. Car paint has two layers:

1. An undercoat of matte (non-shiny) paint

2. A topcoat of highly specular polished paint

The visual properties of layering of real car paint are complex, so a computationally simplified
model that approximates some of the effect is needed. The shader used is illustrated in Figure 11.3.

118 CHAPTER 11. MECHANIX: VEHICLE MECHANICAL SIMULATION

The diffuse component of the car paint is modelled with Half-Lambert lighting [111, 112]. This
technique is not physically accurate, but it provides an approximation of sufficient quality that does
not end up appearing too flat. The specular model of the car is made up of two components; a
broad highlight, and a focused highlight. The broad highlight has colour slightly lighter than the
diffuse surface paint and is rendered using the Cook-Torrance model [113]. Cook-Torrance provides
a “roughness” parameter which allows us to manipulate the highlight’s coverage area and intensity.
The focused highlight is more intense, and is modelled with Phong [114] lighting. Finally, visible
reflections on the car are approximated with a cube-shaped environment map, where a Fresnel [115]
term is used to determine the level of reflectivity based on the angle to the viewpoint. The surface
normals are perturbed slightly to prevent perfect mirror reflections.

The bloom compositor effect is used as a rendering post-process to create feathers of light around
the very brightest or shiniest objects. The bloom algorithm works by passing a 3x3 pixel kernel
(window) over the rendered image, and convolving the pixels with a Gaussian blur filter [116–118],
simplified for real-time rendering. The end effect is a smudging of light colour over nearby colours,
which produces a glare effect; the strength of which can be tweaked. Some examples of cars ren-
dered using all of the above-mentioned techniques are provided in Figure 11.4. The bloom effect
is especially pronounced around the edges of the cars in the figure because of the pure white back-
ground. Note that the angle of these images has been taken to maximise the shader-induced bright-
ness on the car surfaces, and therefore the bloom effect as well; the rendering technique’s effects
vary dramatically as the angle between the surfaces, the light sources, and the camera changes.

The shader effects do not work as well on low-polygonal, and squarer-shaped vehicles, and
are not appropriate for vehicles that would have a non-glossy surface. In these cases an alternative
technique is to use a combination of specular highlights and bloom post-processing to create a similar
effect albeit without the sky-reflective properties. Figures 11.5 and 11.6 illustrate these alternative
rendering techniques. The most obvious difference between the pre-bloom rendering and the post-
processed examples is the level of brightness added by the bloom process; the pre-bloom rendering
has been deliberately darkened to compensate for bloom, thus the difference to overall light level can
be disregarded. We can see in Figure 11.5 that the flat-shaded bus can be improved with the bloom
post-processor, which effectively creates a colour gradient when rendering the larger panels on the
roof. The vehicle in Figure 11.6 has some shiny surfaces, particularly on the wheels, and we can see
that the specular effects are considerably enhanced by the bloom post-process (right hand side of the
figure).

11.3 Drive-train Simulation

We can walk through the complete torque calculation process by stepping through the diagram in
Figure 11.7. The architecture is based on two controllers (Motor and Transmission). Each loads
its own properties and functions. The transmission has a set of gear ratios which factor the motor’s
output torque, and angular velocity inversely. A differential gear with its own ratio has been added
to the end of the transmission to make simulation of real vehicle’s easier; the real values can simply
be plugged in.

Where possible real performance data can be used to drive the vehicles, as in Figure 11.8. The
idea is to approximate the torque curve (the relationship between frequency and torque) for the
simulated motor. A linear interpolation model is used (it will be a quadratic in future works) and
simply read a series of defining 2D points from a script; the system will read as many points as is
required to define the curve, for example:

a dd To r qu eC u rv e Po in t : 600 150
a dd To r qu eC u rv e Po in t : 1000 250
a dd To r qu eC u rv e Po in t : 2000 300
a dd To r qu eC u rv e Po in t : 4000 140

11.3. DRIVE-TRAIN SIMULATION 119

Fi
gu

re
11

.4
:.

V
ie

w
s

of
se

ve
ra

lm
ec

ha
ni

ca
lly

si
m

ul
at

ed
ve

hi
cl

es
re

nd
er

ed
w

ith
th

e
sh

ad
er

im
pl

em
en

ta
tio

n
an

d
“b

lo
om

”
po

st
-p

ro
ce

ss
in

g
ef

fe
ct

.T
he

sh
ad

er
s

ar
e

no
ta

s
ef

fe
ct

iv
e

on
lo

w
-p

ol
yg

on
al

m
es

he
s,

as
so

m
e

ha
rs

h
ed

ge
s

ar
e

vi
si

bl
e

in
th

e
ca

ri
n

th
e

to
p-

le
ft

.

120 CHAPTER 11. MECHANIX: VEHICLE MECHANICAL SIMULATION

Figure
11.5:

A
vehicle

rendered
w

ith
no

shaders
and

no
specular

highlights
(left),and

w
ith

the
bloom

effectbutno
highlights

(right).
N

ote
colour

gradient
on

roof.

11.3. DRIVE-TRAIN SIMULATION 121

Fi
gu

re
11

.6
:

A
ve

hi
cl

e
re

nd
er

ed
w

ith
no

sh
ad

er
s

bu
tw

ith
sp

ec
ul

ar
hi

gh
lig

ht
s

(l
ef

t)
,a

nd
w

ith
th

e
bl

oo
m

ef
fe

ct
af

te
r

sp
ec

ul
ar

hi
gh

lig
ht

s
(r

ig
ht

).
N

ot
e

sh
in

y
ap

pe
ar

an
ce

of
w

he
el

s.

122 CHAPTER 11. MECHANIX: VEHICLE MECHANICAL SIMULATION

motor torque and
throttle inverse

selected gear
and efficiency

inverse

differential
gear torque

wheel drive and
traction torque

resulting
rotation

drive torque

available gears
gear lever

Linear tractive force

Figure 11.7: The complete drive-train assembly used with all torque-affecting forces and their op-
posing forces shown.

Where a series of RPM values have been defined in the first column, and their corresponding torque
values in Newton-meters in the second. Note that these values have been converted from the foot-
pound units of Torque used in the Figure. The linear interpolation function for fetching intermediate
torques is:

τengine = τa + (f − fa)
τb − τa
fb − fa

(11.1)

Where τ is the output torque based on current frequency f . b and a refer to the higher and
lower defined points, respectively, on the torque curve graph. The reason for using a linear model
is simple; real recorded engine data is usually recorded as a set of 2D points, and these can then
be used directly. The linear interpolation function is also computationally cheaper than solving a
quadratic equation approximation of the curve.

The transmission multiplies the engine output torque by the selected gear ratio, and the differen-
tial ratio (an extra gear) to produce a range of effective output torques as in Figure 11.9. The gearbox
for each vehicle can be scripted, as well as the final drive, and a blanket efficiency rating:

addRever seGear : t o r q u e R a t i o : −3.489 wheelsEngaged : 4
addForwardGear : t o r q u e R a t i o : 4 wheelsEngaged : 4
addForwardGear : t o r q u e R a t i o : 1 .551 wheelsEngaged : 4
addForwardGear : t o r q u e R a t i o : 1 wheelsEngaged : 4
a d d D i f f e r e n t i a l G e a r : 5 . 3 8
t r a n s m i s s i o n E f f i c i e n c y F a c t o r : 0 . 7

Here in the script a collection of gears are added, with their ratios (factor of engine output torque),
and the number of wheels engaged by the gear. This allows us to switch from 4-wheel drive to 2-
wheel drive, for example. The final gear is the differential. Real vehicle data will often give you

11.3. DRIVE-TRAIN SIMULATION 123

Figure 11.8: The RPM-torque curve for the Willys MB Jeep. The second plot is an RPM-power
curve for the same engine. Source: Willys 1945 CJ2A Maintenance Manual.

124 CHAPTER 11. MECHANIX: VEHICLE MECHANICAL SIMULATION

Figure 11.9: The RPM at final drive (proportional to vehicle speed) for each gear of the Willys MB
Jeep.

11.4. RESISTANCE FORCES 125

each gear ratio, as well as the differential ratio. It’s convenient to be able to just plug all this straight
in to the script. The final line is a blanket efficiency rating. Real vehicles lose a lot of energy in the
mechanical system - this represents that to dampen the output and keep it in realistic limits.

We can give the torque calculation for the whole drive-train, for each wheel independently,
(Equation 11.2), again as a function of engine frequency f .

τdrive = τa + (f − fa)
τb − τa
fb − fa

· xg · xd · e (11.2)

Where the final drive torque τdrive (sum of the torque on each wheel) is based on the engine’s
output from Equation 11.1, and multiplied by the ratio of the currently selected gear xg , the ratio
of the differential xd, and a variable representing the blanket efficiency of the transmission e. The
drive torque is then divided by the number of engaged wheels n (i.e. 4 in a 4x4 vehicle) and applied
to each wheel.

11.4 Resistance Forces
Opposing the torque generated by the drive-train two main resistance forces are simulated:

• total rolling resistance (of entire drive-train + wheels)

• aerodynamic drag (wind resistance)

Apart from brakes, these are the only forces that gradually slow the vehicle when the throttle
is disengaged. Without these forces it would also be impossible to maintain a constant speed when
the throttle is held at a set position; the constant speed is arrived at when the resistance forces reach
equilibrium with the generated torque force.

As we will see in the following subsections, drag force is proportional to the square of veloc-
ity, which means that at higher speeds drag becomes exponentially stronger. Rolling resistance is
proportional to velocity. The two resistance forces converge at approximately 30m · s−1 [119].

The standard fluid dynamics drag equation is used to model aerodynamic wind resistance in
simulations, given in Equation 11.3, below.

Fd =
1

2
ρ · v2 · Cd ·A (11.3)

Where Fd is the total linear drag force, ρ is the mass density of the fluid; at an approximated
1.2kg/m3 for air, v is the forward speed of the vehicle, and A is the frontal area of the vehicle in
m2.

To simplify the maths used in this model it can be assumed that the vehicle will almost always
be travelling forwards when at speeds where drag would have a significant effect (> 40k/h). We
can therefore simply provide a constant frontal areaA, and a fixed coefficient of drag for each model
of car. This data can be easily obtained for most makes of production vehicles. It would be very
difficult to accurately simulate the coefficient of drag for arbitrary angles of attack, as this coefficient
of drag data is obtained from wind tunnel testing, and usually only the front-on data for well-known
vehicles is published.

Additionally, it can be assumed that the air density ρ will be fixed throughout a simulation. This
can however be changed between simulations to simulate the effect of different climates on both
resistance forces and acoustic properties if that level of accuracy is desired.

The consistent component of the drag equation (independent of velocity) can then be defined as
in Equation 11.4, below. This will be used in the next section for the rolling resistance estimations,
which puts rolling resistance somewhat proportional to drag.

Cdrag =
1

2
· ρ · Cd ·A (11.4)

126 CHAPTER 11. MECHANIX: VEHICLE MECHANICAL SIMULATION

The rolling resistance model ties together all of the internal mechanical resistances of the vehicle
(axles, gears, motor, etc.) as well as each wheel in contact with the ground. These resistances are all
tied together into a single coefficient of rolling resistance Crr, which is linearly proportional to the
speed of the car as in Equation 11.5 below;

Frr = Crr · v (11.5)

A major assumption can be made that, as we know the forces converge at approximately 30m ·
s−1 [119] then it can be said that Crr is roughly 30 times greater than the pre-calculated, known
value of Cdrag from Equation 11.4. In practice this estimate for Crr is too large, as the simulated
Willys MB Jeep was not able to reach its known top cruising speed, but it provides a ballpark estimate
within a factor of 10, which helps to reduce trial-and-error tweaking.

11.5 Effective Torque
An effective torque τf can now be provided, balancing engine output with resistance forces. See
Equation 11.6 below;

τf = τdrive − τrr − τd (11.6)

Where τdrive is the total drive-train output torque as described in Equation 11.2. τrr and τd are
the rolling resistance force Frr and drag force Fd respectively, expressed as angular forces.

This gives us a torque that can be delivered to the wheels. The effective torque is divided by
the number of engaged wheels n and applied to each wheel as in Equation 11.7. Note that the
unpowered wheels are not subject to separate rolling resistance; the total resistance has been divided
only between engaged wheels in this force approximation, which is noticeable in rare circumstances
when some wheels are not in contact with the ground. The full torque model can now be given as in
Equation 11.8.

τwheel =
τf
n

(11.7)

τwheel =
τa + (f − fa) τb−τafb−fa · xg · xd · e− Crr · v − 1

2ρ · v
2 · Cd ·A

n
(11.8)

Where, once again f is the currentRPM at the engine, which interpolates between linear defined
lesser and higher points a and b, respectively, to find a torque τ from the torque curve chart for a
particular make of vehicle. Where xd and xg are the gear ratios, e is the blanket transmission
efficiency, Crr is the coefficient or rolling resistance (roughly 30 times Cdrag), v is our current
speed, ρ is the air density (about 1.2), n the number of engaged wheels (e.g. 2 or 4 for 4-wheel
drive), and CdA is the drag profile of front coefficient multiplied by front cross-sectional area A; a
standard rating model for production vehicles (also commonly referred to as CxA in the automotive
industry).

Some care must be taken to ensure that resistance forces always oppose the current direction of
travel; otherwise reversing, and movement in neutral gear (when drive torques are zero) or opposing
current gear direction can be confused. We can simply investigate the current angular velocity ω on
the x axis of one of the wheels, and negate the resistance forces whenever ω is found to be negative.

11.6 Suspension Simulation
All vehicles are simulated with all-wheel independent suspension (front and rear). This is simply
the easiest model to implement as it can use ODE’s spring constants per-wheel without requiring
additional linkage calculations. It is also a fair approximation of most modern vehicles’ suspensions.

11.6. SUSPENSION SIMULATION 127

Each wheel on each vehicle can be given a spring constant k in that vehicle’s script. When this
has been provided, springs are approximated by Hooke’s Law [120] (see Equation 11.9 for the ideal
model). Wheels that have no spring constant are simulated with no springs (rigid joints).

Fs = −k · x = m
δ2x

δt2
(11.9)

The equation above gives us the ideal simple harmonic oscillator, where Fs is the resulting
oscillatory force acting on the system, k is the spring constant, and x is the displacement of the
sprung object (the wheel) from the base. The differential equation relates this to the mass of the
wheel m and change in time t.

A damping coefficient of velocity c can also be provided, and in this case the model is also
subject to a damping force Fd (see Equation 11.10).

Fd = −c · v = −c · δx
δt

(11.10)

Where c is the ideal viscous damping coefficient given in Newton-seconds per meter (N ·s·m−1).
After parsing spring constants and coefficients from a vehicle’s script, these are converted into

ODE’s native error reduction parameter erp and constraint-force mix cfm using Equations 11.11
and 11.12, and simulated by ODE.

erp =
t · k

t · k + c
(11.11)

cfm =
1

t · k + c
(11.12)

Where t is the size of the time-step in seconds, and k and c are the spring constant and damping
coefficient, respectively.

An anti-roll parameter, in Newtons per meter displacement, can be given to each opposing set
of wheels. This simulates anti-sway bars, which in real vehicles are a kind of torsion-bar spring
(twisting bar) that runs under the vehicle between wheels on each side, and restores balance when
the vehicle starts to roll over. The wheels on the vehicles are actually spheres, so they are always
trying to flip over. To counter this the vehicles can be given super-powerful anti-sway forces. The
default value provides 20kN of restorative force to each wheel for every meter of difference between
left and right side. ODE is very bad at handling large forces, so if this force gets much bigger then it
will break the physics integrator.

A spherical model is used to represent both the shape and uniform distribution of mass for the
wheels. Each simulated wheel combines the mechanical wheel and approximates a tyre, and has a
massm in kilograms, a softness approximation using ODE’s constraint-force mix (cfm), a Coulomb
dry friction coefficient property, and a side-slip Coulomb dry friction coefficient property.

Cylinders would be the most natural option to choose for simulating wheel geometry, but are
also very expensive as multiple points are in contact with the ground at once. Tyres do not retain a
consistent cylindrical shape during travel, and are therefore not always well represented as cylinders.
ODE’s integrator does not handle this sort of collision efficiently.

Another option for simulating wheels is a ray-casting method, where no wheel geometry is di-
rectly simulated but contact with the ground is manually derived from collision-detection rays pro-
jected from a normal to the underside of the vehicle chassis. This is a computationally fast method
but does not accurately simulate wheel contacts, especially in multi-point contact situations (e.g.
climbing stairs).

Limitations of the spherical wheel model are increased computational cost over ray-based mod-
els, the possibility of colliding with objects close to vehicles’ sides due to protruding spheres, re-
duced vehicle tolerance to rolling over, and a restorative ability to recover from rolls that is only
possible with spherical geometry.

128 CHAPTER 11. MECHANIX: VEHICLE MECHANICAL SIMULATION

Figure
11.10:

O
verlaid

is
a

m
echanical

blueprint,
and

depicted
is

its
physically

sim
ulated

shape;
the

tracks
are

approxim
ated

by
spheres

at
road

w
heel

positions
buthave

slightly
largerradiithan

the
actualw

heels
to

m
ake

up
forthe

thickness
ofthe

tracks.

11.6. SUSPENSION SIMULATION 129

Figure 11.11: Associating segments of continuous track (highlighted red) with an armature bone.
When the physically simulated wheel moves vertically then the nearby bone will move; animating
the track deformation. The idler wheel at the top-middle of the figure has no physical function (the
tracks have no weight), but has its own wheel bone that can is animated to turn at the correct angular
velocity relative to the road wheel. The sprocket wheel to the right of the figure could be animated as
with the idler, but here it has been simulated as a wheel so that it also has a collision shape and can
simulate traction using the elevated rear of the track; tall obstacles can be climbed or drawn under
the track.

The mechanical simulation can support a flexible-body approximation. This is part physical
simulation and part graphical animation. The model is simplified physically for CPU efficiency and
animated as a visualisation post-process. Efficiency and batch count, particularly respecting real-
time constraints are very high for vehicles with many moving parts if each one is a separate mesh
as per the physics visualisation system. Therefore in final implementation it is much more efficient
to reduce batch count to one rendering operation per vehicle or as low as possible. Figure 11.10
displays a physical model before flexible bodies are animated. We see can in the figure that the
road wheels are larger than the real mechanical wheels; their size also approximates the thickness of
the track links and makes physical contact with the ground. The flexible belts are added later as a
visualisation layer - thus the tracks are simulated at the lowest level by bigger spheres. The wheels
will eventually be rendered at their to-scale size.

For the flexible body simulation to work the vehicle must be one graphical mesh with one ma-
terial so that it is not automatically split into sub-meshes (and hence also batches) by the rendering
library. To visualise the movement of individual wheels and parts within a single mesh an animation
armature system is used, and each part associated with a bone joint in the armature. Vertices for
the part are manually assigned to the bone (see Figure 11.11) such that when the bone is moved
automatically by the physics system, then the associated flexible body vertices are also moved. This
process usually has a 50:1 batch reduction in our test cases and therefore increases the amount of
similar entities able to be displayed on-screen by that factor.

Animation is skinned manually by forcing the bones to move to the positions and orientation
offsets dictated by the physics model. In practice this means overriding the key-frame animation
system of the rendering engine. The links between flexible body vertices and wheel joints for each
type of vehicle are scripted. The results are presented in Figure 11.12.

130 CHAPTER 11. MECHANIX: VEHICLE MECHANICAL SIMULATION

Figure
11.12:V

iew
s

ofa
sim

ulated
30

tonne
vehicle’s

chassis
w

ith
the

anim
ated

track
deform

ation.A
lthough

the
vehicle’s

tracks
are

physically
sim

ulated
as

a
group

ofspheres,the
targetanim

ation
approxim

ates
sm

allerroad
w

heels
and

flexible
belts.

11.7. TRAILERS, ARTICULATED VEHICLES, TRAINS & TRAMS 131

11.7 Trailers, Articulated Vehicles, Trains & Trams

Figure 11.13: Articulation in Mechanix with an unpowered trailer. The trailer is simply an unpow-
ered vehicle limbered to the jeep with the coupling approximated by a universal joint.

The physics wrapper (ODEWrapper) supports creation of articulated vehicles at run time,
including but not limited to towed trailers (see Figure 11.13). Trailers are treated simply vehicles
that are attached to other vehicles. A whole string of vehicles can therefore be attached together i.e.
train carriages.

The wrapper’s function for attaching trailers is:

bool ODEWrapper : : a t t a c h T r a i l e r T o V e h i c l e (c o n s t i n t& t r a c t o r I n d e x ,
c o n s t i n t& t r a i l e r I n d e x , c o n s t f l o a t& x , c o n s t f l o a t& y , c o n s t f l o a t& z) ;

Where tractorIndex and trailerIndex are the ID numbers of each vehicle, and where x, y,
z are the location of the attachment point (the tow bar) as an offset from the origin of the leading
vehicle.

The hinge itself is coded as a universal joint (see Figure 11.14) - this overcomes most of the roll
limitations without having to build artificial springs or limits in the joint.

Some articulated vehicles need bendy/rubber/flexible attachments. You can achieve this as well
by using the flexible body animation of the previous section.

11.8 Limitations
The most obvious limitation of the system is the computational cost of collision handling in real-
time with a rigid-body dynamics engine. The collision handler is a recursive function, where every
wheel has a contact with the ground. In practice this has limited us to about 50 simultaneously active
vehicles in a graphical simulation on a modern quad-core desktop, which was able to support 200
vehicles of the same type without collision-handling.

The main limitation of the system, however, is that the underlying rigid-body library, ODE,
becomes unstable when large forces or high speeds are involved. Specifically, the wheels will tend
to break off their rigid joints, visibly buckling, when cornering or braking at full force whilst turning,

132 CHAPTER 11. MECHANIX: VEHICLE MECHANICAL SIMULATION

Figure 11.14: This photo of a universal joint has its axiis of rotation overlaid. We can see that it is
possible to rotate almost freely around any axis, whilst still maintaining an attachment. It was more
robust to simulate this kind of joint for articulation that attempting to simulate a ball-and-socket joint
with limited degrees of freedom of rotation. Original, un-annotated photograph courtesy of Michael
Gormack.

or turning sharply at high speed. This is a problem common to most ODE-based systems; a number
of work-arounds are documented on the ODE website. The system is therefore suitable for low-
speed urban traffic simulation or slow, heavy vehicles, but is simply not stable enough to simulate
high-speed racing or car-chase type games.

There are a number of alternative solutions for increasing the performance or stability of the
system; the choice of which would depend on the intended application and available resources;

• Increase the number of physics integrations per simulation time step.

• Replacing spherical wheel bodies and joints with ray-cast car-ground contacts.

• Reducing forces on wheels and joints by applying them to the car body instead.

• Replace ODE back-end with vehicle-specific library.

• Parallel physics computation on a GPU.

A small increase to car performance at high speed can be made by doubling the number of
physics integrations per simulation step, but this also roughly doubles the computational cost per
step, and thus reduces the number of cars that can be simulated in real-time by half. This is perhaps
the easiest method for increasing stability if there is CPU to spare, but it will only increase the stable
driving speed, not completely solve the buckling problem.

A commonly used method used to eliminate the wheel-buckling problem, and to decrease com-
putational cost is to remove the rigid-body wheels altogether. The wheel-ground contacts are then
manually created by casting a ray from the car axle positions to the ground. The wheels can of course
still be graphically represented, but the rotations will have to be calculated manually. This approach
will also eliminate the tendency of the car to roll due to the spherical wheels, which means that the
anti-roll bar torsion forces can be reduced to realistic levels as well. The drawbacks to this approach
is that the wheels will only make one contact with the environment, which would be acceptable for
a flat race-track, but complex all-terrain climbing behaviour would not be possible.

11.8. LIMITATIONS 133

Another solution might be to retain the 3D wheel contacts, but reduce the overall torque loads
on the wheel joints by applying the larger resistance forces (especially brake and anti-sway forces)
directly to the body of the vehicle, rather than to the wheel joints. Of course, ODE could also be
replaced with a physics integrator optimised for vehicles.

The PhysX library provides the same rigid-body dynamics as ODE, but is able to utilise the
parallel architecture of Nvidia hardware to perform parallelised physics integration on the GPU.
PhysX is a proprietary library that requires Nvidia graphics hardware. This is probably the best
option for improvement to performance, and to accuracy, if the hardware is available.

A number of blanket assumptions and approximations have been made to either reduce computa-
tional cost of design complexity. Further models could be added to the system to increase mechanical
realism. Some of the simpler improvements that could be made:

• Linked suspensions (e.g. independent front and linked rear).

• A tyre shape model; tyre shape is currently represented by fixed-shape rigid spheres with a
“softness” allowance.

• Clutching; there is currently no clutch in the model - gear transitions are seamless which
produces unusual audio transitions.

• Non-linear torque curves; a curve could be fitted to the engine torque model, rather than using
linear interpolation. This might improve engine-based audio reproduction.

In terms of rendering, the major modern limitation is no longer the count of triangles or polygons
in the scene (modern GPUs can render millions of triangles in a scene in one pass), but the count of
rendering batches, or passes; which are limited by the speed of the CPU. An in-depth explanation by
Matthias Wloka of the relationship between triangle-count and batches can be found on the Nvidia
website [121], where we see that a 1.5GHz CPU with a minimum of frame rate of 50 graphical
frames per second (FPS) can process up to a maximum of 700 batches per frame. Every one of the
Ogre3D materials applied to a sub-mesh requires its own draw call; one batch. This means that every
car mesh in the camera frustum demands 7-10 draw calls; even if the car is one mesh it is split into
separately rendered sub-meshes based on it’s materials (the body, the windows, the interior, etc.).
With an average of 10 vehicles in a traffic scene this is 100 batches per scene required by vehicles
alone. Horizontal camera shots, where more vehicles are in the scene but obscured by building
meshes, are typically not optimised, and an additional 100 redundant draw operations may be added.
If additional resources are to be rendered, we can see that the vehicle rendering at this quality can
quickly overload the CPU; decreasing the frame-rate. Some possible optimisations to batch count
include:

• Use a level of detail (LOD) model to decrease complexity of vehicle further from camera
focus.

• Combine parts with similar shaders (i.e. wheels) into one mesh, and use armatures to rotate
and translate the wheels.

• Use an occlusion algorithm for large geometry (i.e. buildings) to remove hidden vehicles from
drawing.

• Reduce number of vehicles in scene.

134 CHAPTER 11. MECHANIX: VEHICLE MECHANICAL SIMULATION

Chapter 12

Gremlin: A System for
Benchmarking Mechanical Motion

12.1 Introduction
This chapter describes a method for evaluating machine-learning control systems for vehicles.
Whilst motion control evaluation frameworks exist, there is not yet a standard test case for evaluat-
ing motion control of mechanically simulated vehicles within a physically simulated environment,
where a large number of behavioural constraints exist. This chapter provides specifications for one
such framework, including environment design, vehicle specifications, and evaluation criteria. The
framework is used to evaluate an existing control system with results discussed. The framework has
potential for comparison of control algorithms or for machine-learning in an objective self-evaluation
rôle.1.

Making an objective evaluation of steering behaviour is a complex task, however, evaluation is
invaluable to us as it can be used to objectively measure:

• performance comparison at a given task of a new algorithm versus an existing one

• objective self-evaluation (fitness function) of a machine-learning algorithm

Comparative or objective analysis of steering and motion control algorithms remains a difficult
problem. It is hard to construct a level playing field because the designers of motion control systems
typically design the problem environment as well as the solution to it, so that any comparative
performance analysis to existing algorithms, although perhaps based on objective observation, is
highly biased in favour of the new algorithm. One framework has been proposed to tackle this
task; SteerBench [61, 62]. SteerBench presents a large test set of typical motion-control problems
as small independent, and well defined scenarios. Using a selection of these scenarios it is possible
to compare the strengths of algorithms over a wide range of problems, which provides a much more
level playing field. A good evaluation of a new algorithm would ideally use both a problem-specific
evaluation (fitness for task) as well as a SteerBench type evaluation to give an overview of general
application.

What existing steering evaluation frameworks do not yet do is provide a set of scenarios for
evaluating control of vehicles with mechanical systems and constraints in environments with rigid
body physics systems and constraints. The primary objective of this chapter is to extend the set of
test scenarios offered by existing frameworks to the mechanical-physical vehicle domain by defining
a test vehicle and a physically simulated environment. The secondary objective is to provide a

1 Videos of selected simulation runs from the experiment in this chapter are available at http://antongerdelan.
net/videos.html under the heading Selected runs from “Gremlin” mechanical motion benchmarking experiments

135

http://antongerdelan.net/videos.html
http://antongerdelan.net/videos.html

136CHAPTER 12. GREMLIN: A SYSTEM FOR BENCHMARKING MECHANICAL MOTION

test environment or scenario that lends itself to self-adapting controller optimisation in an objective
(not dynamic) learning environment where the “adaptive” potential of genetic-fuzzy systems can be
clearly demonstrated and quantified.

12.2 Definition of Test-Course Environment

To determine if the benchmarking system can provide a robust fitness measure two mechanically
simulated vehicles will be evaluated, each with quite distinct motion properties. The “Mechanix”
system, as introduced in Chapter 11 is used to simulate each vehicle with real, known vehicle spec-
ifications. A large, heavy, 2-level Enviro 400 bus as defined in Table B.3 of Appendix B. The bus
has slow acceleration, and a long body is used for the first test vehicle. The bus has very high mo-
mentum when driving at speed, so has the potential to knock over smaller obstacles that are in its
path. The second test vehicle is the small, fast, light, Willys MB jeep as defined in Table B.3 of
Appendix B. The jeep has a high centre of gravity that puts the vehicle at risk of flipping over when
cornering at speed. The vehicles then have quite different motion control properties, and using the
same controller for both should produce quite different paths of motion. A well balanced evalua-
tion framework should be able to distinguish clearly between the motion of each vehicle. If this is
the case then the benchmarking framework should lend itself to self-adapting controllers that can
adaptively learn (optimise controller rules) to drive different vehicles.

The current evaluation scenarios that makes up the SteerBench test set are most relevant to pedes-
trian or crowd simulation; with several models of corridor problems and multiple agent scenarios.
Rigid body dynamics properties of the world and kinematic/mechanical limitations (of agents) are
not given special consideration. The scenarios are also static which is not suitable for evaluation of
stochastic or dynamic motion controllers, and means that the test sets do not generalise well to target
environments, which tend to be stochastic. Thus, if we aim to improve a motion controller based
on its performance in selected test cases (perhaps automatically) then we run into the over-training
problem where the algorithm learns the specific quirks of the problem and does not generalise well
to slight variations of the problem. Other works have solved this issue by introducing “jitter”; ran-
dom variations into the test scenario [38]. SteerBench is currently the most established evaluation
framework for motion control, and therefore provides a solid base for comparative analysis. So,
with this in mind the best approach is to define a scenario that extends the set offered by SteerBench,
but incorporates a rigid-body physics and mechanical system, as well as a level of randomisation to
increase the robust nature of training and introduce a level of uncertainty into evaluations.

A fairly generic scenario that represents the basic problem domain of obstacle avoidance-target
seeking controllers as used throughout this thesis, but also introduces a reasonable level of problem
complexity is the “forest of obstacles” scenario as used in Craig Reynolds’ “OpenSteer” library of
motion-control software. It seems reasonable then to recreate the “forest” problem space, with the
same sort of randomised distribution of obstacles, but with rigid-body physics underpinnings, and
use this to extend the standard benchmarking scenarios as offered by SteerBench. In this way the
problem space is very similar to those found in well-known libraries.

Given a rigid body dynamics environment we have the option of making the “tree” obstacles in
the scenario able to be knocked over, that is, not fully static obstacles. This gives us not only a more
stochastic environment to navigate, but also further polarises the optimised machine-learning rules
for different vehicles. The obstacles are encoded as 2 × 2 × 10m poles, and weigh one tonne. This
means that it is advantageous for a large vehicle, such as the bus, to knock the obstacles out of the
way when travelling at a significant speed, rather than to drive fully around them. The jeep on the
other hand will not be able to push over the obstacles, thus any learning would have to diverge rules
to optimise each controller.

The test course or scenario itself is made up of a lattice of 210 of these 1-tonne posts, which are
initially evenly distributed over a 200×100m rectangular area; one post every 10×10m intersection.
The position of each post is randomly varied by up to 4 meters in each direction on the horizontal

12.3. EVALUATION METHOD 137

plane, such that the posts can never overlap, but clusters and gaps in the field can form. The length
of the obstacle field is 100m, but it is doubly wide so that the controllers can not learn to avoid
all of the obstacles and circumnavigate the course; an unexpected behaviour that was emerging in
the experiments of Chapter 10. Boundary walls could also have been used, which would constrain
vehicles to the course, but this would not guarantee that controllers would not over-develop avoid-
ance behaviour. The starting position is exactly half way across the course, and 10m behind the first
obstacle. This ensures that longer vehicles start clear of any obstructions. The finishing point is
positioned on the opposite side of the obstacle field, exactly 120m meters from the starting location.
This means that, were there no obstacles, the vehicle would drive in a straight line, 120m to the
destination. The stating orientation of the vehicle is not randomised, because this introduced too
much variation into the starting conditions of the experiment in Chapter 9, relative to the length of
the course (turning around took a significant amount of time and affected the fitness evaluation). The
3D-rendered scenario is depicted in Figures 12.1 and 12.2.

12.3 Evaluation Method
Genetic-fuzzy systems in previous chapters have used fitness functions of the type expressed in
Equation 12.1 to analyse the performance of vehicle motion.

fitnessx =

n∑
i=0

(wc
c̄i
di

+ we(1 − ti

div
−1
max

)

n
(12.1)

The fitness function (Equation 12.1) gives us a fitness score for an individual x. An agent is
evaluated for its performance on each path segment i along its route of navigation. These evaluations
are accumulated until a distance comprising a complete run has been covered. The mean is then
taken with respect to the total number of segments completed n. The core of the function comprises
a collision component and an expediency component that are added together. The collision and
expediency components have weighting factors, wc and we respectively. These weights emphasise
the relative importance of each component, and are therefore arbitrarily set by the designer. c̄i
represents the individual’s mean mesh intersection in meters over a path segment. Intersection depth
is recorded every frame of calculation and accumulated. The mean intersection is divided by the
distance di of the segment. Expediency is calculated by taking the time to complete a segment ti
over the ideal time to complete the segment, where vmax is the ideal velocity of the agent. This is
subtracted from 1 so that the range of expediency values increases from 0 (ideal).

The problem with this sort of evaluation method is that it is hard to know how to weight each
component to justify “good” motion according to each rating. It may well be essential to use a
method such as that in the equation when evaluating an individual dynamically, because we want
to take as many environment features as are present into account and make a comprehensive fit-
ness evaluation; there is no guarantee that a path segment will contain the obstacles at all, so it is
convenient to use as much “rating” criteria as is available to penalise the motion evaluation for an
individual.

However, the objective, repeated “forest” test scenario allows the luxury of using a much more
simple evaluation criteria. In this chapter the fitness, or quantified score given to a motion controller
moving through the forest environment can simply be fitnessx = t, or the time, in seconds, for
an agent to complete a run of the course. The reason that we are able to exclude collisions from
the evaluation is because a physics model is being used and will punish collisions realistically. To
diminish this reward it is simply a case of increasing the mass of the obstacles. But what happens if
a vehicle becomes stuck and can not complete the course? An infinite time evaluation is not useful.
It is convenient to establish a set of conditions that detect if a vehicle has failed to complete the
course, and award a penalty evaluation. But what if all of the motion controllers fail to complete the
course; it is still desirable to rank them all comparatively (especially in the case of machine-learning

138CHAPTER 12. GREMLIN: A SYSTEM FOR BENCHMARKING MECHANICAL MOTION

Figure
12.1:

T
his

obstacle
course

w
as

designed
to

bear
a

resem
blance

to
the

“forest”
obstacle

course
from

the
O

penSteer
library.

T
he

vehicle,pictured
at

its
starting

position,m
ustm

ove
120m

autonom
ously

to
the

otherside
ofa

lattice
field

ofrandom
ly

scattered
cuboid

“tree”
obstacles.E

ach
obstacle

m
easures

2
×

2
×

1
0m

and
w

eighs
1000kg.

Physically
sim

ulating
the

obstacles
m

eans
thatheavier

vehicles
can

learn
to

push
through

if
they

are
slow

ed
less

by
this

than
by

m
oving

around.

12.3. EVALUATION METHOD 139

Fi
gu

re
12

.2
:A

w
id

e-
an

gl
e

vi
ew

of
th

e
“f

or
es

t”
sc

en
ar

io
.A

tt
he

be
gi

nn
in

g
of

a
ru

n,
ea

ch
“t

re
e”

is
po

si
tio

ne
d

on
a

1
0
×

1
0m

gr
id

,a
nd

ra
nd

om
ly

m
ov

ed
±

4m
on

th
e

gr
ou

nd
pl

an
e.

T
hi

s
ra

nd
om

ne
ss

in
tr

od
uc

es
ro

bu
st

ne
ss

in
to

ev
al

ua
tio

ns
,a

nd
fo

rc
es

ve
hi

cl
es

to
co

pe
w

ith
cl

us
te

rs
an

d
ga

ps
.

T
he

cu
bo

id
s

ex
te

nd
10

0
m

et
er

s
fo

rw
ar

d
an

d
20

0
m

et
er

s
la

te
ra

lly
to

pr
ev

en
tt

he
ve

hi
cl

es
fr

om
le

ar
ni

ng
to

ci
rc

um
ve

nt
th

e
en

tir
e

co
ur

se
(a

n
is

su
e

en
co

un
te

re
d

in
th

e
pr

ev
io

us
ch

ap
te

rs
).

140CHAPTER 12. GREMLIN: A SYSTEM FOR BENCHMARKING MECHANICAL MOTION

scenarios)? The physical nature of the “forest” test environment means that collisions are handled
by the environment; either by stopping the vehicle or by obstacles being rammed over. We then do
not need to include a collision cost in the fitness function and can represent it as simply:

fitnessx = t− d (12.2)

Where the fitness score awarded to an individual, x, is the time taken to complete the course t, in
seconds, or a penalty score of 60 for uncompleted runs, and the distance remaining to the destination
d, in meters. For completed runs the distance will be 0.0 meters, but the uncompleted runs will have
larger values for d (up to 120m). In this way the uncompleted runs are awarded larger, and less “fit”
scores, but they can still be ranked comparatively based on the distance achieved towards the goal
position.

A series of catch-all conditions are needed to determine if a run did or could not complete.
Detecting these states early will reduce the overall time needed to make a benchmarking evaluation.
The conditions are given in Algorithm 2.

Algorithm 2 End run condition detection in the “forest” scenario.
if Vehicle body roll exceeds 1.775 radians. then

Vehicle has rolled over. End run. Penalty time 60 of seconds.
else if Vehicle has not moved more than 0.5 meters in last 12 seconds then

Vehicle is stuck. End run. Penalty time 60 of seconds
else if Time for run exceeds 60 seconds then

Vehicle is lost. Stop run.
else if Distance to destination is less than 6 meters. then

Vehicle has reached destination zone. Run completed.
end if

This completes a definition of the test scenario. For a computer scientist familiar with this sort
of simulation construction it should be possible to recreate the course and conditions, using the
specifications given throughout Appendix B, and a mechanical simulation similar to that described
in Chapter 11. The remainder of this chapter will describe a motion controller that is going to be
evaluated, and a discussion of the results obtained from this evaluation.

12.4 Control System Design
A fuzzy motion controller will be analysed using the test scenario. A more sophisticated type of
fuzzy motion control architecture has been developed based on experiences with earlier chapters
in this thesis. The main innovation is the addition of switches to prevent controllers from having
conflicting rules. A large amount of training time was wasted identifying and removing controllers
that had been tested with conflicting rule bases in the experiments of Chapter 10, which can be a
recurring problem for controllers that are optimised with a genetic algorithm as conflicting rules can
be randomly generated as the result of mutation. Figure 12.3 gives us a three-stage control system
for basic target-seeking behaviour. There are four fuzzy controllers in this motion control system.
There are two controllers for braking behaviour. One takes the distance to destination “x” and the
current speed of the vehicle as inputs. The controller is for stopping the vehicle as it approaches the
destination. A second braking controller takes the current speed of the vehicle and the angle to the
destination from the vehicle’s current heading as inputs. The purpose of this braking controller is
to reduce the speed of the vehicle if it needs to turn sharply. An algorithmic switch “S2” performs
a simple logical operation and outputs only the greater of the two outputs. A throttle controller
considers distance and angle to destination, as with controllers in previous chapters. Finally, a
steering controller considers the angle to the destination, and the current speed of the vehicle to make
steering adjustments. This gives the controller an ability to steer sharply, but not at speeds where

12.5. EXPERIMENTS AND RESULTS 141

the vehicle is prone to flipping over. To prevent simultaneous braking and throttling behaviour from
developing, an algorithmic switch “S1” allows only one behaviour to dominate, the other control
output remains zero. The switch runs on a small set of logical instructions. In this case braking
behaviour over a threshold factor of 0.05 (5% of maximum) will disable the throttle completely.

sp
e
e
d

d
ist. to

 x

a
n
g

le
 to

 x
steer

brake

brake

throttle

S
1

>

brake

throttle

steer

S2

Figure 12.3: Control system used for destination-seeking behaviour. Inputs are angle and distance
to destination x, and current vehicle speed. Outputs are a factor of brake, throttle, and steering
controls. One braking controller is used for stopping at the destination, and the other slows down the
vehicle when it needs to make a sharp turn. Switch S2 chooses the larger of the two braking outputs.
Switch S1 prevents simultaneous braking and throttling. The steering controller takes the speed of
the vehicle into account to prevent turning so sharply that the vehicle flips over.

The controller that will be used in the benchmarking experiment is one level of complexity
higher; it has a collision-avoidance module added to it, and a more complicated algorithmic switch
for switching between the outputs of both systems. The switching or blending of collision avoid-
ance and destination seeking controllers was not effectively solved by earlier motion controllers in
this thesis; either outputs could conflict (cancelling out steering controls for example) in blending
systems, or sharp flickering back and forth between systems would occur as obstacles moved in and
out of threshold angles which resulted in oscillating steering behaviour. Figure 12.4 illustrates the
most sophisticated controller used in this thesis. The nearest obstacle o is considered. An estimated
time to collision (distance to obstacle / speed of vehicle) input is used, which allows the use of only
one layer of controllers rather than one layer for distance and one for speed. Switch “S3” is a more
sophisticated solution to the system switching and blending problems of earlier controllers. The
algorithm used is given in 3, and effectively enables blending of outputs where appropriate, as well
as hard switching between outputs where necessary.

12.5 Experiments and Results
The experiment for this chapter was designed to investigate whether a stable fitness evaluation could
be made with the parameters and evaluation criteria used, find out how many simulation runs it would
take in this scenario before a reliable assessment or benchmark could be arrived at, and determine if
there was enough sensitivity in the calibration of the benchmarking system to differentiate between
the performance of different vehicles using the same controller. Gathering this information from

142CHAPTER 12. GREMLIN: A SYSTEM FOR BENCHMARKING MECHANICAL MOTION

tim
e
 to

 o

a
n
g

le
 to

 o

steer

brake

brake

steer

sp
e
e
d

d
ist. to

 x

a
n

g
le

 to
 x

steer

brake

brake

throttle

S1

>

throttle

S3

S2

Figure 12.4: A mixed function motion control system with algorithmic switches. A reactive colli-
sion avoidance system has been added with two controllers that consider estimated time (distance /
speed) to and angle to nearest obstacle o. Switch S3 flips between seeking and avoidance outputs
and activates with any significant collision avoidance output.

Algorithm 3 Logic for mixed motion control system output switch “S3” in Figure 12.4. Both hard
switching (one output on, one output off), and blending (both outputs enabled) are used.

if Avoidance braking crisp output > 0.05 then
Set throttle output to 0.0, Set braking output = obstacle avoidance brake controller crisp output

end if
if Avoidance steering crisp output > 0.10 then

Set steering output to avoidance steering crisp output. Ignore other steering controls.
end if

12.6. FUTURE WORKS 143

an experiment gives us a series of benchmarks which we can either use to base future evaluations
of motion controllers on, or that we can use as parameters to a machine-learning system such as a
genetic-fuzzy system, to allow it to effectively optimise its rule base for this test scenario.

The experiment was run and repeated indefinitely with both test vehicles. Each run would reset
the test environment, using a new randomised environment configuration, and record the fitness
assessment in an accumulating array of results. At the end of every run the total of current results
was summed and the mean result found. The standard deviation and standard error were extracted
for the data collected at each run, and then plotted on the graph in Figure 12.5, which displays results
up to the 600th run. The idea is that we can watch the averaged evaluation stabilise, and the error
margins decrease as more run results are collected. We can see that by the 150th run we have quite
a reliable result, in that the results for both vehicles have separated into distinct streams of data, and
the uncertainty calculations no longer cross over. If we use the data from the 150th to the 600th run
(the earlier runs are shaded over in the figure), then we can fit straight lines to the plots (blue and
red horizontal lines); indicating a fairly stable result. The error threshold does not decrease beyond
about ±5 fitness points, as there is a level of randomness in the simulation, which we can say is the
maximum accuracy or granularity of the fitness evaluation.

It can be concluded that the benchmarking system presented in this chapter is a good evaluation
scenario for motion controllers in a mechanical system, which is a new contribution to the range of
benchmarking tools in the literature. A minimum number of runs required for a robust evaluation
can be quantified at 150 runs. It can also be said that this benchmarking system can differentiate
between motion control results, but has a margin of error at approximately ±5 fitness points. This
system would therefore also make a good candidate for machine learning systems to optimise motion
control rules.

12.6 Future Works
Future works will expand the range of scenarios available for mechanically simulated tests. Some
key examples scenarios to consider are the car pendulum-balance problem (a typical fuzzy logic
demonstration problem), and the car-and-trailer reverse into a park problem. It is also an intention
to train a genetic-fuzzy system with this simulation and to develop a metric for quantifying the
“adaptability” of the system, for example, “How well can the system adapt when asked to drive with
a new vehicle?”.

144CHAPTER 12. GREMLIN: A SYSTEM FOR BENCHMARKING MECHANICAL MOTION

Figure
12.5:

T
his

graph
gives

us
accum

ulated
fitness

scores
and

uncertainty
m

easurem
ents

for
tw

o
different

vehicles
being

driven
by

the
fuzzy

m
otion

controllerfrom
Figure

12.4.T
he

firstthing
thatthe

graph
show

s
us

is
thatthe

fitness
m

easurem
entforboth

vehicles
stabilises

afterabout120-150
runs

have
been

collected.
W

e
can

fitstraightlines
to

data
collected

after
the

150
run

threshold
(illustrated

by
the

horizontalblue
and

red
fits)

so
w

e
can

say
for

the
sim

ulation
used

that150
runs

is
a

safe
threshold

to
stop

evaluating
w

ith
a

reliable
estim

ate
of

fitness.
W

e
can

also
see

a
clear

distinction
betw

een
the

result
from

both
vehicles

(the
errorbars

do
notoverlap),w

hich
indicates

thatthe
fitness

function
m

akes
a

course
enough

evaluation
to

distinguish
betw

een
different

m
otion

controlresults.T
he

sim
ulation

appears
to

have
a

fixed
spread

ofresults
of±

5
fitness

points
due

to
the

robust(random
ised)starting

conditions.

Chapter 13

Conclusions and Discussion

13.1 Review of Fuzzy Motion Controllers

Fuzzy motion controllers are an elegant solution to motion control problems because they can be
applied to almost any type of motion control. During the work on this thesis fuzzy controllers
have been used to control the motion of simulated road traffic, tracked vehicles, pedestrian (and
zombie) crowds, herds of cows and horses, boats, amphibious trucks (in and out of water, as well
as transitional motion), heavy 2-level buses, and the original Willys MB jeeps that were prone to
flipping over in reality, and still are in simulation. In some of these cases the motion controllers
didn’t work as well, and weren’t an advantage over conditional logic (boats). But, in those cases
where constraints exist to motion such as pedestrians with a limited range of animations, or vehicles
with mechanical constraints, then fuzzy controllers are an effective tool for “filling in the blanks” or
smoothing between states that are hard to transition between with a conditional logic model.

Experiences with the work for this thesis have brought a number of caveats to the fore. Firstly,
that as the complexity of the environment (or the vehicle) increase, then the number of controllers
required also increases. For example; in some of the works in this thesis the vehicles or pedestrians
travelled at more of less constant speeds. The means that steering or turning behaviour produced cir-
cular paths of motion. Four controllers were sufficient in these cases to handle steering and acceler-
ation for collision avoidance and destination following. With the later, fully mechanically simulated
vehicles, a lot of braking, leaning over on suspension, and more rapid acceleration occurred, which
meant that there were situations where steering was happening during braking and accelerating be-
haviours, which produce much more complex paths. One of the advantages of fuzzy controllers is
that when they are not steering enough to avoid collision, then they are often robust enough to move
onto the next level of steering behaviour and start to steer harder, despite inadequate rules. A prob-
lem arises, however, when we have physically simulated vehicles with a high centre of gravity, that
tend to tip over if cornering at speed; a jeep for example. This added complexity of being able to tip
over due to the physics involved necessitates the addition of another level of controllers that takes
current speed into account when considering both braking and steering behaviours, otherwise it is
simply impossible to create a rule-base that differentiates high-speed steering behaviour from low-
speed steering behaviour. From a design point of view it is very hard to say exactly how many and
what type of fuzzy controllers are required to fully accommodate for all of the conditions required
for effective decision-making. Of course the motor controllers that are involved, the more complex
the optimisation task as the number of rules increases.

145

146 CHAPTER 13. CONCLUSIONS AND DISCUSSION

13.2 Conclusions on Genetic Hybrid Systems
Navigation and motion control systems are notoriously difficult to calibrate, and introduce complex
constraint-based problems that may shift during run-time (are stochastic). Genetic algorithms are an
attractive tool for helping to solve these complex constraint-based problems automatically. A major
conclusion of the work in thesis is that fuzzy control system architectures need to be specifically
designed as being part of a genetic-fuzzy system. A genetic algorithm is a not a universal solution
to the problem of optimising fuzzy controller rules. The arrangement or architecture of controllers
needs to be carefully made so that it lends itself to optimisation by a guided search algorithm such
as a genetic algorithm. Specifically, this means that designers of control systems need to include
a number of special catches and conditions that prevent (perhaps unexpected) rule combinations
from emerging that confuse the outputs of controllers such that they interfere with one another. In
particular, if a genetic process is set to improve a controller’s rule-base dynamically. A second
outcome of this thesis was the evaluation and development of a range of fuzzy motion controller
“hybrids”. The designer needs to take special care in the arrangement of controllers such that there
are no situations where the controllers can conflict or cancel each other out. The consequence of not
designing fuzzy controllers specifically for tuning by genetic algorithms is that the training process
will be enormously inefficient. The genetic algorithm has a degree of randomness, so there will
always be rules generated that are undesirable mutations. The key is to make sure that it is not
possible to breed rule-bases that are incapable of effective operation. A work-around built into
research in this thesis was to give a number of “fail” detectors to each agent, after which training
could be terminated prematurely, removing some excessively long training times:

• A detection mechanism to tell if the vehicle has rolled over and can no longer move effectively.

• A “stuck” timer. This is reset after the vehicle has moved a small distance (such as 0.5m), but
has a very small threshold of 30s or less. This is a catch-all that penalises individuals that have
conflicting motion rules, and also vehicles that have become wedged between obstacles.

• A total time-out. If a run is not completed in under a threshold time, somewhat longer than the
stuck timer, then the training is terminated prematurely. This catches vehicles with rule-bases
that are “too scared” of hitting obstacles, and continually circle, and vehicles that are driving
far too slowly.

Another key design feature is the inclusion of “programmatic switches” in genetic-fuzzy con-
troller architectures. This gives the designer the ability to imbue a set of logical operators into a
switch that detects and prevents confused or badly mixed outputs from multiple controllers. These
switches usually need to be no more complicated than deactivating some controllers when one con-
troller’s output reaches some threshold level.

A major consideration to make is the time it will take to train a set of controllers using a genetic-
fuzzy system. The more complex a simulation, the more fuzzy controllers are needed for sensi-
ble motion (more conditions are taken into account), which mean more rules in the rule-base and
hence longer chromosomes, and more runs required to evaluate an individual’s fitness. Adding more
complexity to simulations; mechanical simulations, more obstacles, dynamic obstacles, etc. also
increases the number of runs required to assess an individual’s fitness. So we can see that as environ-
ments become more complex, the time requirements of training increase exponentially. Therefore,
a shrewd designer that wants to take advantage of a genetic-fuzzy system as a dynamic on-the-fly
tuning process will design the entire simulation, as well as the controller architecture to deliberately
take advantage of the genetic-algorithm tuning process. Introducing multiple agents training within
one simulation can divide training time costs, but this is only going to suit some applications.

It can be concluded that real-time dynamic on-the-fly training, the special case where agents
learn as they are used in real time, is really only feasible for very short chromosomes, that is genetic-
fuzzy systems with no more than 2 or 3 controllers using a 3 × 3 FAMM. However, if large number

13.3. OVERARCHING CONCLUSIONS 147

of these agents are able to be deployed at one time and trained in parallel (a game environment
would be an ideal example of this) then we can afford to increase the complexity of the controllers
or environment.

Genetic-fuzzy systems can be quite effective at relieving the time requirements of hand tuning a
large number of fuzzy rules in a static training situation, and optimising fuzzy rule-bases over hand-
optimised sets by using fixed runs through obstacle courses, but the effectiveness of training depends
on a number of different training tools being calibrated correctly. Firstly, the environment itself
needs to contain the same type of environment as expected in final application. The environment
elements (obstacles, etc.) must be regularly distributed over the test area to ensure a more or less
uniform training environment. The length of course runs needs to be long enough to collect enough
fitness data to differentiate “good” runs from “bad” runs. This will only be clear after studying
graphs of results from a control study. The environment needs to include some sort of randomised
element to prevent overly-brittle training and the learning of quirks in the environment, as discussed
in Chapter 2.

Summarising the work on genetic-fuzzy systems in this thesis, we can say that it introduces the
following original contributions:

1. A GFS and architecture specific to vehicle motion control.

2. An adaptive, real-time variation of the above.

3. A generalised genetic architecture that can be linked to any motion controller.

4. Evaluations of all of the above.

Introducing genetic systems may help to solve more difficult stochastic calibration problems,
however, a number of new constraint-based problems are also introduced. The genetic system itself
has a large number of parameters which need to be optimised to ensure efficiency of the learning/op-
timisation process, particularly if it is to be run with real-time constraints. An exhaustive evaluation
study of these parameters is provided in this work for one environment, with the optimal configu-
ration presented. There is no guarantee, however, that this configuration will apply equally well to
other environments, and as such only serves as a starting point for environment-specific studies. Fu-
ture implementations of hybrid genetic systems should expect to conduct a similar meta-optimisation
process (optimising the optimiser) before normal operation can proceed.

Considering the amount of work involved in manual tuning compared to setting up the training
process, we can conclude that using a genetic hybrid it is only a clear advantage to fuzzy motion
control systems that have to solve a difficult stochastic problem with a large number of constraints.
There are two types of application where this is the case; either where the rules need to change in real
time, or where the standard approach of optimising by test case will not guarantee a good balance
across a dynamic environment. Examples of ideal applications are:

1. crowd-type simulations where the desired overall (group) motion is hard to arrive at by indi-
vidual case scenarios

2. vehicle motion in unfamiliar, mixed, or changing environments where the rules need to adapt
in real-time

3. motion calibration with “black box” constraints such as physics or some animation systems

13.3 Overarching Conclusions
Although it was not a stated aim of this thesis, one of the main contributions of this work was
the development of a robust 3D simulation design framework for scientific work. The features of
this being robust toolkits for rapid design of simulation environments for running experiments, a

148 CHAPTER 13. CONCLUSIONS AND DISCUSSION

software design pattern for partitioning different simulation components and libraries in a modular,
flexible configuration, a series of data visualisation and transparency tools and graphing approaches,
and benchmarking systems for running repeatable motion control experiments with detailed discus-
sion of how performance data should be collected from these experiments with measurements of
uncertainty. Perhaps most important in this particular outcome is the vehicle mechanical simulation
framework of Chapter 11, which has not been published elsewhere in academic literature, and the
benchmarking system of Chapter 12, which develops this into a well-defined scenario for making
objective measurements of motion control performance, as mechanical and physical constraints have
not been considered in benchmarking systems in the literature.

A second outcome of this thesis was the evaluation and development of a range of fuzzy motion
controller “hybrids”. The most interesting result of these works was the discovery of how difficult it
is to put the evaluation of simulation-based motion controllers into a objective (scientific) evaluation
framework. This is due to the inherent difficulties of comparing motion controllers that are custom-
designed for solving motion control problems of a specific simulation. These are “apples-to-pears”
comparisons. It is a nonsense to try to compare the performance of a mechanically simulated agent
with an agent that does not respect the same physical constraints. The major conclusion drawn here
is that the evaluation frameworks need to evolve alongside new simulations and controllers. Both
for demonstration to peers, and also to provide an effective self-evaluation tool for machine-learning
algorithms such as the GFS.

The importance of effectively demonstrating the performance of motion controllers remains, and
the best practice discovered in this work is to use a “mixed arms” approach, or a varied toolkit of
visualisation and data collection tools; recorded videos of simulation runs, performance data from
well defined scenarios and simulations, real-time graphs, and if possible, replication of well-known
problems and test-environments.

13.4 Future Works

One of the future works directly stemming from this research is the development of more standard-
ised test environments utilising physical-mechanical simulation; designing the car-and-trailer reverse
problem, and the pendulum balance problem as well-defined test cases with effective evaluation cri-
teria would be particularly interesting works for this area.

An ongoing work is the integration of a generic genetic-fuzzy system library into mechanically
simulated vehicle simulation with objective benchmarking tools such as the scenario developed in
Chapter 12. Given the larger number of constraints and rules to optimise for these systems it is of
interest to discover if a GFS is capable of this more sophisticated level of optimisation, how long
this would take in terms of training hours, and indeed how this might compare to a human driver’s
learning curve.

Given the range of simulations, including mechanical vehicle simulations, which fuzzy con-
trollers have been successfully applied to it is reasonable to assume that larger numbers of fuzzy
controllers will be used in real vehicles. We have already seen a commercialisation of embedded
fuzzy control chips for consumer appliances such as washing machines. It is not unrealistic to expect
that fuzzy controllers will be used in most light rail (tram) and that we will see much greater uptake
by heavy rail applications by the end of this decade. Emerging technologies for autonomous control
of heavy road traffic (lorries and truck-and-trailer units) will certainly be an area of study sponsored
by industry before autonomous private vehicles are commercialised. The goal of this research is to
reduce transport costs and to act as an emergency “auto pilot” to help reduce driver tiredness related
collisions on long trips. Fuzzy controllers may well be investigated as a vehicle-driving technology
in this area.

Simulation will continue to play a key rôle in the development of any fuzzy motion control
technology, and the toolkits used for visualisation and physical simulation of real problem domains
will have to evolve alongside the hardware technology.

13.4. FUTURE WORKS 149

The development of fuzzy controllers for computer animation will continue, based on the success
of Massive’s fuzzy logic for simulation of very large, interacting crowds and battle scenes. At some
point within this decade the interactive media technology used in video games will converge with
the level of technology currently used to render motion pictures. We will see true “interactive films”,
that is, computer games rendered on home-theatre type systems, using motion-sensing hardware
and 3D projection technology to immerse players, but also featuring real actors, and using the same
interactive, large-scale crowds and armies currently limited to film production. When this cross-over
occurs we will have a surge of technologies used to animate and move plausible, interactive crowds,
and a high demand for computational efficiency and realism.

150 CHAPTER 13. CONCLUSIONS AND DISCUSSION

Appendices

151

Appendix A

Summary of Publications

The following works were published during the course of this thesis.

A.1 Peer-Reviewed Articles
1. Cathy Ennis, Anton Gerdelan and Carol O’Sullivan, “Plausible Methods for Populating Virtual

Scenes”, Crowd Simulation Workshop, Computer Animation and Social Agents, June 2010,
Sant-Malo, France.

2. Anton Gerdelan and Carol O’Sullivan, “A Genetic-Fuzzy System for Optimising Agent Steer-
ing”, Computer Animation and Virtual Worlds, May 2010, v.21, pp.453-461. [58]

3. Sébastien Paris, Anton Gerdelan, and Carol O’Sullivan, “CA-LOD: Collision Avoidance Level
of Detail for Scalable, Controllable Crowds”, Motion in Games, Springer Berlin / Heidelberg,
2009, v.5884, pp.13-28. [13]

4. Anton Gerdelan and Napoleon H. Reyes, “Towards A Generalised Hybrid Path-Planning
and Motion Control System with Auto-Calibration for Animated Characters in 3D Envi-
ronments”, Advances in Neuro-Information Processing, Springer Berlin / Heidelberg, 2009,
v.5506, pp.1079-1086. [55]

5. Daniel P. Playne and Anton Gerdelan and Arno Leist and Chris J. Scogings and Ken A. Haw-
ick, “Simulation Modelling and Visualisation: Toolkits for Building Simulated Worlds”, Re-
search Letters in the Information and Mathematical Sciences, Massey University, 2008, v.12,
pp.25-50. [59]

A.2 Technical Reports
1. Anton Gerdelan, “Mechanix: Vehicle Mechanical Simulation”, Tech. Rep., Institute of Infor-

mation and Mathematical Sciences, Massey University, November 2010, CSTN-118, Albany,
New Zealand. [122]

2. Anton Gerdelan, “A Brief History of AI in Entertainment”, Tech. Rep., Institute of Infor-
mation and Mathematical Sciences, Massey University, November 2009, CSTN-105, Albany,
New Zealand. [1]

3. Anton Gerdelan, “Auto-Training Animated Character Motion: A Rule-Base Tuning Hybrid
Fuzzy-Genetic Algorithm”, Tech. Rep., Institute of Information and Mathematical Sciences,
Massey University, June 2009, CSTN-098, Albany, New Zealand. [57]

153

154 APPENDIX A. SUMMARY OF PUBLICATIONS

4. Anton Gerdelan, “Architecture design for self-training intelligent vehicle-driving agents:
paradigms and tools”, Tech. Rep., Institute of Information and Mathematical Sciences,
Massey University, April 2009, CSTN-088, Albany, New Zealand. [56]

5. Anton Gerdelan, “Driving Intelligence: A New Architecture and Novel Hybrid Algorithm for
Next-Generation Urban Traffic Simulation”, Tech. Rep., Institute of Information and Mathe-
matical Sciences, Massey University, February 2009, CSTN-079, Albany, New Zealand. [54]

6. Anton Gerdelan, “A solution for streamlining intelligent agent-based traffic into 3D simula-
tions and games”, Tech. Rep., Institute of Information and Mathematical Sciences, Massey
University, January 2009, CSTN-072, Albany, New Zealand. [53]

7. Anton Gerdelan, “Grid-Ireland and e-Research Review for KAREN and BeSTGRID”,
KAREN Community Reports, September 2008, Wellington, New Zealand. [123]

8. Ken A. Hawick and Anton Gerdelan, “Software Integration Architectures for Agents”, Tech.
Rep., Institute of Information and Mathematical Sciences, May 2008, CSTN-054, Albany,
New Zealand. [70]

Appendix B

Reference Cards: Simulation Models
and Specifications

155

156 APPENDIX B. REFERENCE CARDS: SIMULATION MODELS AND SPECIFICATIONS

Phenomenon Model used Units stored in memory
Numerical precision single-precision floating-point values 32-bit float
Integrator precision 20 iterations of ODE quick step integrator iterations per time-step
Time Step T accumulated fixed-steps of 0.01 seconds (s)
Change in time δt seconds seconds (s)
Mass m Newton’s Second Law [124, 125] kilograms (kg)
Distance d 1 ·ODE units and 1 ·Ogre units meters (m)
Angle ∠ 1 ·ODE units and 1 ·Ogre units radians (rad)
Force F Newton’s Second Law Newtons (N)
Friction F Coulomb friction [126, 127] µ coefficient and force (N ·m)
Rigid body softness ODE inter-penetration model constraint-force mix (cfm)
Power P 103 ·ODE ACR units Watts (W)
Torque τ τ = P

ω , 103ODE units Newton-meters (N ·m)
Frequency f f = ω · 60

2·π (mechanical) and f = 1
T (acoustic) Hertz (Hz) and rotations per minute (rpm)

Velocity v 1 ·ODE units and Newton’s Second Law meters per second (m · s−1)
Angular Velocity ω 1 ·ODE units radians per second (rad · s−1)
Acceleration a Newton’s Second Law meters per second per second (m · s−2)
Angular Acceleration α Newton’s Second Law radians per second per second (rad · s−2)
Spring equation ODE’s approx. of Hooke’s Law [120] ODE error reduction parameter (erp) and
Gravity −9.8 ODE y-axis gravity variable meters per second per second (m · s−2)
Min. speed rigid bodies disabled < 0.5 meters per second (m · s−1)
Min. angular speed rigid bodies disabled < 0.0075 radians per second (rad · s−1)
Min. idle steps inactive bodies disabled > 10 integrator iterations
Min. idle time disabled this ODE parameter seconds (s)

Table B.1: Classical mechanics simulation model details with parameter values used. Units given are
the values and factor stored in one computational variable (which affects floating-point calculation
errors).

157

Component Model used Variables
Vehicle velocity v ODE’s quickstep integrator derived m · s−1

Engine power P Mechanix max. power (kW)
and max. frequency (rpm)
or max. torque (N)

Engine acceleration α linear approx. model max. δPδt (Ws)
or non-linear function interpolated graph points

Transmission Mechanix forward and reverse gears
Gears forward or reverse direction

gear ratio factor of engine torque
wheels engaged count

Wheel torque τ τtransmission

wheels(n) ODE-derived (N)
Wheel angular velocity ω transmission output ODE-derived (rad · s−1)
Wheel steering yaw limits ±range (rad)
Wheel steering and factor of steering control factor
Inverted steering as above with negative factor −factor
Wheel differentials wheels independently simulated
Tyre friction Coulomb-friction coefficient µ
Tyre bounciness ODE’s bounce approx. bounce factor
Tyre softness ODE’s rigid-body softness approx. softness constant
Sprung suspension all-wheel independent spring equation (see Table B.1)
Bogie suspension not simulated except where no springs
Anti-sway bars approx. to restorative force max. force F in Newtons (N)
Articulation and trailers universal joint between vehicles 3D anchor position
Continuous tracks approx. by road wheels and torque factor torque factor τ in Newtons (N)

Table B.2: Summary of mechanical simulation models used with parameters specific to vehicle
model and values loaded from vehicle’s script.

158 APPENDIX B. REFERENCE CARDS: SIMULATION MODELS AND SPECIFICATIONS

Component Value Units
Hull geometric ~shape [1.57, 1.37, 3.34] m

mass distribution ~m [1.57, 0.50, 3.34] m
uniform mass m 1000.0 kg
ground clearance d 0.22 m
friction f 2.0000 µ
softness 0.000010000 cfm

Wheel & Tyre radius r 0.41 m
mass m 10.000 kg
friction f 0.50000 µ
softness 0.10000 cfm

~position0 [−0.68, −0.69, −1.10] m
~position1 [+0.68, −0.69, −1.10] m
~position2 [−0.68, −0.69, +1.35] m
~position3 [+0.68, −0.69, +1.35] m

Suspension Springs Type 4x4 independent
ODE model 1.0000 erp
ODE model 0.00125 cfm

Anti-Sway Bars Restorative Force F 20000 N ·m
Steering Torque τ 2000.0 N ·m

Wheels engaged i 2, 3 indices
Angle limit 1.5000 rad
Full steer time 12.000 s

Motor Torque curve point 600.00, 119.31 rpm, N ·m
Torque curve point 2000.0, 143.72 rpm, N ·m
Torque curve point 4000.0, 105.75 rpm, N ·m

Transmission
gearR -3.4890, 4 torque ratio, wheels engaged
gearN 0.0000, 0 torque ratio, wheels engaged
gear1 2.5710, 4 torque ratio, wheels engaged
gear2 1.5510, 4 torque ratio, wheels engaged
gear3 1.0000, 2 torque ratio, wheels engaged
differential 5.3800 torque ratio
efficiency 0.70000 torque factor

Resistance Forces
foot brakes 1750.0 max. N
drag 0.55000 coefficient
drag area 0.80 m2

roll friction 18.000 coefficient

Table B.3: Specifications used for mechanical simulation of a Willys MB Jeep. Distances accurate
to centimetre.

159

Component Value Units
Hull geometric ~shape [2.55, 3.6, 9.8] m

mass distribution ~m [2.55, 3.6, 9.8] m
uniform mass m 15500.0 kg
ground clearance d 0.45 m
friction f 2.0000 µ
softness 0.000010000 cfm

Wheel & Tyre radius r 0.55 m
mass m 10.000 kg
friction f 0.50000 µ
softness 0.10000 cfm

~position0 [−1.1, −1.9, −2.7] m
~position1 [+1.1, −1.9, −2.7] m
~position2 [−1.1, −1.9, +2.5] m
~position3 [+1.1, −1.9, +2.5] m

Suspension Springs Type 4x4 independent
ODE model 5.0000 erp
ODE model 0.00125 cfm

Anti-Sway Bars Restorative Force F 100000.00 N ·m
Steering Torque τ 20000.00 N ·m

Wheels engaged i 2, 3 indices
Angle limit 1.5000 rad
Full steer time 30.000 s

Motor Torque curve point 600.00, 500.00 rpm, N ·m
Torque curve point 1300.00, 705.00 rpm, N ·m
Torque curve point 1600.00, 895.00 rpm, N ·m
Torque curve point 2600.00, 1000.00 rpm, N ·m

Transmission
gearR -3.4890, 2 torque ratio, wheels engaged
gearN 0.0000, 0 torque ratio, wheels engaged
gear2 1.5510, 2 torque ratio, wheels engaged
gear3 1.0000, 2 torque ratio, wheels engaged
differential 5.3800 torque ratio
efficiency 0.70000 torque factor
automatic shift up at 2200 rpm
automatic shift down at 850 rpm

Resistance Forces
foot brakes 125000.00 max. N
drag 0.4 coefficient
drag area 6.0 m2

roll friction 15.000 coefficient

Table B.4: Specifications used for mechanical simulation of a Enviro 400 bus. Distances accurate
to centimetre.

160 APPENDIX B. REFERENCE CARDS: SIMULATION MODELS AND SPECIFICATIONS

Glossary

A* Algorithm An ubiquitous search algorithm that is commonly used for path-finding in computer
games and robot navigation. Many variants have been created for specific applications. A*
is a graph search algorithm that uses an admissible heuristic to guide itself to the goal. It is
optimal for the heuristic used.

admissible heuristic A heuristic function is admissible if its output cost heuristic is no greater than
(never under-estimates) the lowest-cost path to the goal.

artificial intelligence (AI) A field within computer science that studies artificially intelligent
agents. Artificial intelligence attempts to create in machines decision-making behaviour that is
either rational, or can create convincing human-like behaviour. AI raises philosophical issues
about the nature of intelligence.

artificial life (AL) A field that studies biological processes or animal behaviour using complex
computer simulations. Artificial life attempts to recreate biological phenomena based on log-
ical rules.

algorithm A formalised sequence of instructions for describing a task or procedure. Commonly
used in mathematics and computing. In computer science an algorithm is an abstract descrip-
tion of a procedure as a series of logical steps to be taken; this can then be implemented into
a working form using a specific computer programming language.

angular velocity Speed in a circular direction. SI units are in radians per second (rad · s−1).

animat A contraction of anima-materials, animats are artificial animals. Animats can refer to
robots, but more commonly animat refers to very simple agents in complex artificial life sim-
ulations, which are used, in particular, to study the nature of emergence.

artificial neural network (ANN) Often described as “the second best way to implement a solu-
tion”, ANNs are a computational model that mimics the structure and functionality of a bio-
logical neural network, where the artificial equivalent of biological neurons are linked nodes.
ANNs are usually used in machine-learning operations, where input information flows from
one end of the network to the other. A statistical approach is usually used to add or remove
neurons The resulting network is a computational model of the relationship between the in-
puts and the outputs. ANNs are most commonly found in complex pattern-matching problems
such as automatically identifying car plate numbers from digital photographs.

application-programming interface (API) Acts as a gatekeeper between pieces of software. The
API is a list of requests that the programmer is allowed to ask of the programme behind the
interface.

articulated vehicle From the Latin articulus: small joint. A segmented vehicle joined by a pivot.
Allows for sharper turning.

161

162 Glossary

artificially intelligent agent A machine component that has the properties of an intelligent agent.
In this thesis these agents are used to enable virtual characters and robots to operate au-
tonomously.

Belief-Desire-Intention (BDI) BDI is a popular paradigm for design of intelligent agents, partic-
ularly those that are designed to mimic humans or fulfil a human-like rôle such as driving a
vehicle. BDI agents form a perception of their environment based on information gathered
from their sensors, maintain inherent “desires” or goals to accomplish, and map those goals
into actions that affect the environment through an “intention” process.

bogie An individual chassis or framework carrying wheels. Trains or tracked vehicles have multiple
bogies.

Caterpillar tracks See continuous tracks.

chassis A framework connecting only the wheels, suspension and basic automotive components of
a vehicle.

classical mechanics A major field within physics that studies the physical laws which mathemati-
cally describe the motion of bodies and the affect of forces on bodies.

cloud computing An abstraction of several computer networked services into one layer with a com-
mon interface. Analogous to grid computing.

computational grid A computer network based on the operation of an electrical power grid. Grids
are typically used for the computational component of international “big science” experi-
ments such as the Large Hadron Collider (LHC) experiments at CERN. Resource sharing
is performed via grid services, which are analogous to web services. Grid access is usually
protected by federated trust networks.

continuous tracks Mechanical system using a loop of moving interlocked metal segments designed
to spread ground pressure over a wider area than wheels and increase surface traction.

Coulomb’s Law of Friction That kinetic friction is independent of sliding velocity; Ff ≤ µFn; a
dry friction approximation proposed by Charles-Augustin de Coulomb.

D* Algorithm A dynamic variation of the A* Algorithm that has been used in various autonomous
robot motion applications as it is able to deal with intermittent changes to an environment such
as opening and closing doors.

deterministic A deterministic system is one where the future state is a product only of the current
state, and it is therefore possible to determine any future state from any past or current state. A
non-deterministic system is one where some unpredictable or unknowable element exists that
affects the state of the system. Time step-based computer simulations are usually deterministic
until a random function is introduced, as is the case in all of the simulations in this thesis, at
which point they can be considered non-deterministic.

differential A device that allows opposing road wheels to rotate at different speeds.

differential gear A fixed gear that multiplies any output gear ratio from a gearbox by a set amount.

Direct3D A Windows library for visualising 2D and 3D graphics from simple primitives. Part of
the DirectX toolkit.

distributed computing Distributed computer programmes are designed to be split up into parts that
run simultaneously on multiple computers communicating via a network.

Glossary 163

evolutionary algorithm (EA) A problem solving method emphasising a self-improvement system
that is inspired by biology. The methods given particular study with in this work are genetic
algorithms.

emergence Complex systems or patterns arising from a large number of simple interactions. In
this thesis we are mainly concerned with emergent behaviours; complex group behavioural
patterns that arise from interactions between individuals with only a small number of rules
for interacting with one another. Examples discussed in this thesis include line-forming and
dispersal behaviours in crowds or flocks and also queuing and over-taking behaviours in road
traffic.

epoch Unix Time, or the Unix “epoch” is the number of seconds elapsed since midnight, 1 January
1970, Coordinated Universal Time. This event is roughly the time that the first Unix machine
was started.

fuzzy associative memory matrix (FAMM) A rule table used to match fuzzy input values to fuzzy
output values in the fuzzy inference process.

fitness function A function that rates the effectiveness of a chromosome in a genetic algorithm.
The chromosomes from each generation can then be ranked in order, and the best chosen to
reproduce for the next generation.

Fmod Ex A proprietary, multi-platform, 3D audio library made by Firelight Technologies. Plays a
variety of different digital and analogue audio formats. Supports higher-level physics based
audio simulation techniques such as the Doppler effect, and geometric occlusion.

frames per second (FPS) The frequency that graphical output to screen is redrawn (a “frame” is
processed) by a programme. This can also be given in Hertz (Hz), but is usually given as
“FPS” to avoid confusion with the monitor’s hardware refresh rate. The frame rate produced
is dependent on graphics hardware, computing hardware, complexity of underlying software,
and the efficiency of the software pipeline. Designers of real-time visualisations generally
aim to produce frame rights high enough to maintain the illusion of motion on their lowest-
powered hardware target.

finite state machine (FSM) A behaviour model based on a finite number of possible states, and the
transitions between those states. FSMs can be modelled in a graph similar to a flow chart.
This model is used, amongst other applications, to drive automata (automatic machines), and
represent a basic level of convincing behaviour in computer actors.

fuzzy logic Also known as “crisp logic”, fuzzy logic is an extension of fuzzy set theory, and is a
system of logical reasoning for values that are imprecise; between 0 and 1, or true and false.
Classic predicate logic, or first-order logic only reason based on values that are either true or
false.

fuzzy sets A fuzzy set is a class of objects with a continuum of grades of membership from 0 to 1
or completely false to completely true. Introduced by Lofti Zadeh in 1965 as an extension of
mathematical sets [49]. The Fuzzy Sets article gave rise to the fields of fuzzy logic, and fuzzy
control theory.

genetic algorithm (GA) A heuristic used to automatically improve a search method to solve a par-
ticular problem. Genetic algorithms are one of several evolutionary algorithms.

gear A wheel with teeth that interlock with larger or smaller gear wheels. Used in a gearbox.

gear ratio The torque to speed ratio of a gear. Larger gears transmit higher torque and lower angular
velocity.

164 Glossary

gearbox A device that allows a driver to select different gears from the transmission.

genetic-fuzzy system (GFS) Fuzzy control system hybrids that incorporate a genetic algorithm for
determining optimal fuzzy system parameters. Genetic-fuzzy systems require an architecture
and a fitness function specific to the problem that they solve.

genetic neural network (GNN) A hybrid algorithm that optimises the structure of a neural network
by using a genetic algorithm.

graphics processing unit (GPU) A specialised microprocessor designed to compute graphics ren-
dering operations. Modern graphics hardware cards contain processors with 32 or more cores,
and gain a significant processing speed advantage because graphics processing jobs lend them-
selves to parallel execution. GPUs are now commonly used for processing non-graphical par-
allel algorithms via the CUDA programming architecture [128–130].

heuristic Heuristics are rule of thumb guides for helping to find a solution more quickly than by
trying all possible alternatives indiscriminately. In path-finding a heuristic is usually expressed
as a distance. A popular example is the “Manhattan distance”, which judges a rough distance
through a city by adding up the number of city blocks up and across.

hull Any part of the vehicle built on top of the chassis.

hybrid algorithm A new algorithm created by combining and also possibly modifying existing
algorithms. Hybrids typically provide additional infrastructure or interfaces which allow the
existing algorithms to communicate.

idler Smooth wheels that carry mechanical links and are not directly driven (pulleys). Supporting
pulleys that do not change the direction of links are often simply referred to as “rollers” e.g.
in a continuous track’s top row of wheels, the idler is the front wheel, intermediate pulleys are
rollers, and the powered, rear wheel is the sprocket.

intelligent agent Any entity that is capable of perceiving its environment and carrying out goal-
directed action. In this thesis use of the term “intelligent agent” specifically implies an artifi-
cially intelligent agent.

Irrlicht A scene-graph library abstracting either Direct3D or OpenGL to produce 3D graphics.
Irrlicht also add support for all of the major shader implementations.

level of detail (LOD) A series of techniques for reducing graphical or computational detail given to
objects that are deemed to be less perceptually important, usually based on distance and angle
from a viewpoint or camera. This decreases the computational cost of reproducing larger
scenes. Usually this means reducing the number of polygons used to render an object’s 3D
mesh, but can be applied to physics, audio, or behavioural computation.

microsimulation Within the field of road traffic simulation, microsimulation models are those
where individual vehicles are simulated moving through a defined road network. The ad-
vantage of simulating individual vehicles, rather than simply overall flow patterns, is that
traffic queuing behaviour (at intersections) can be simulated. Commercial microsimulation
models are typically coupled with a 3D graphics to visually demonstrate the effect of road
infrastructure changes on traffic conditions.

middleware A software layer that sits between top-level applications and the operating system in
distributed computing systems. Middleware encapsulates some core functionality (such as
mail sorting), whilst only loosely coupling it to both the target platform and the high-level
application. The middleware paradigm is also used to wrap common features of intelligent
agent systems so that they can be shared between applications.

Glossary 165

NeuroEvolving Robotic Operatives (NERO) A video-game based on the rtNEAT algorithm.

neural network (NN) See ANN.

non-deterministic See deterministic.

Open Dynamics Engine (ODE) A programming library for simulating rigid body dynamics sys-
tems (classical mechanics). Developed by Russell Smith

Object-Oriented Graphics Rendering Engine (Ogre) Ogre3D is a scene-graph-based object-
oriented rendering library that abstracts both OpenGL and Direct3D, as well as adding some
cross-functional higher level tools such as material scripting.

Object Oriented Input System (OIS) A library providing an abstract interface to various input
hardware (keyboard, mouse, joystick, etc.).

Open Audio Library (OpenAL) An open-source, multi-platform, 3D acoustic library designed to
inter-operate with OpenGL.

Open Graphics Library (OpenGL) A cross-platform library for visualising 2D and 3D graphics
from simple primitives.

partial truth A logical truth value on a continuum between completely true, and completely false.
This is usually represented as a numerical value between 0 and 1. Fuzzy set theory is based
on the concept of partial truths.

path-finding Path-finding or path-planning is the use of a search algorithm to find a valid and
unobstructed route of movement for a particular object through an environment from a start
position to a goal position.

real-time simulation “Real-time” implies that the operation of a system has a time constraint that
relates it to the real-world. In graphical applications this usually implies that the rate of pro-
cessing needs be fast enough to appear realistic to the human viewer.

renice To change the priority of a process running on a Unix-like operating system using the Unix
programme “nice”. This maps to the priority in the kernel’s scheduler. −20 is the highest
priority and 20 is the lowest.

rigid body dynamics The study of the motion of rigid bodies. Rigid bodies are not able to be
deformed, but have a geometric shape, and various physical properties such as mass. Rigid
body dynamics is a part of classical mechanics, and is based largely on Newton’s Second Law.
Computers often avoid flexible and deformable calculations as these are more computationally
expensive, thus physics libraries for real-time processing are still largely rigid body-based.

road wheel On a tracked vehicle road wheels are those that make contact with the lower part of the
belt and support the vehicle’s weight.

real-time optimally adapting mesh (ROAM) A level of detail algorithm that optimises large,
sprawling terrain meshes by reducing the polygon count of sections of terrain that are fur-
ther from the viewpoint.

robot Originally robota; characters from the Čapek brothers’ play R.U.R.. For this thesis we use
our own specific definition of a robot; “physical systems driven by an artificially intelligent
agent”. This then separates robots from automata (no intelligence) and pure-software agents.

166 Glossary

robot soccer A competitive research platform, where the aim is to develop robots that can play
soccer without human intervention, in order to further the study of various robot-related tech-
nologies. There are two major competition leagues; FIRA, and RoboCup.

routing algorithm A method used to find optimal paths for transmission through a network. Com-
monly used in electronic data transmission between computers.

real-time NeuroEvolution of Augmenting Topologies (rtNEAT) An algorithm that enables CPU-
efficient machine learning with real-time constraints. Used in the NERO video game.

search algorithm A set of algorithms used in computer science that solve problems which require
evaluation of a number of possible solutions before a valid solution is discovered. This may
involve scanning a database or phone book for a specific entry, or searching a range of possi-
ble navigation options for a shortest path (path-finding). Search algorithms typically abstract
items or options to be investigated as “nodes”. Once a node has been investigated, the sub-
sequent possible search options are represented by “edges” connecting to other nodes. The
search domain can then be abstracted into a tree or graph structure.

sprocket A wheel with teeth that meshes with a chain or track. Usually the drive wheel.

stochastic From the Greek stochastikos, meaning “aiming at a target”; implying that decisions re-
quire some estimate or guesswork. Stochastic systems or processes are non-deterministic,
meaning that subsequent states are the result of predictable actions as well as some random
element. In computer programmes there are standard functions for introducing a random ele-
ment. These are fixed patterns of numbers, but can usually be mathematically seeded with the
post-epoch time at programme execution in order to make the system behave differently every
time that it is executed; hence non-deterministic from the point of view of the system.

suspension Any components suspended beneath the hull or body of a vehicle on which it runs
(wheels, bogies, etc). Suspensions are usually sprung for shock absorbing and cross-country
performance.

torque Rotational force. SI units are in Newton-meters (N ·m).

transmission A complete series of gears and connecting mechanisms that allows a driver to deliver
a range of different torques and speeds to the vehicle’s wheels.

universal joint Connects two bodies and allows rotation around any axis. One axis can be con-
strained to a vehicle to allow a trailer to yaw and pitch but not roll independently.

Wumpus Hunt the Wumpus was an early (1972) computer game. In the game a player moved
through a map of adjoining rooms, and could do one action per turn; move to an adjacent
room, fire an arrow into an adjacent room, etc. The Wumpus game is a classic example
used in game theory and artificial intelligence because an AI agent playing the game would
have to deal with uncertainty. Because the environment is discretised into ’rooms’ rather than
continuous distances, predicate logic can be used to determine the next best move.

Bibliography

[1] A. Gerdelan, “A Brief History of AI in Entertainment,” Tech. Rep. CSTN-105, CSSG, In-
stitute of Information and Mathematical Sciences, Massey University, Albany, New Zealand,
November 2009.

[2] S. Guy, J. Chhugani, S. Curtis, P. Dubey, M. Lin, and D. Manocha, “PLEdestrians: A Least-
Effort Approach to Crowd Simulation,” in Symposium on Computer Animation (SCA’10),
Eurographics/ACM SIGGRAPH, July 2010.

[3] S. Paris, J.-L. Berrou, and J. Amos, “Legion: genesis of a commercial crowd simulator,” in
Computer Animation and Social Agents (CASA’10), (Saint-Malo, France), June 2010.

[4] L. C. Malone, D. Kaup, R. Oleson, M. Rosa, F. Jentsch, T. L. Clarke, J. Faulkner, and
R. Jaggie, “Validation of crowd simulations,” in Summer Computer Simulation Conference
(08SCSC), (Edinburgh, Scotland), pp. 363–370, June 2008.

[5] A. Lerner, Y. Chrysanthou, A. Shamir, and D. Cohen-Or, “Data Driven Evaluation of
Crowds,” in Motion in Games (MIG2009), vol. 5884, (Zeist, the Netherlands), pp. 75–83,
Springer-Verlag LNCS, 2009.

[6] D. J. Kaup, T. Clarke, R. Oleson, and L. C. Malone, “Crowd dynamics simulation research,” in
16th Conference on Behavior Representation in Modeling and Simulation (BRIMS), pp. 173–
180, 2007.

[7] C. Ennis, C. Peters, and C. O’Sullivan, “Perceptual evaluation of position and orientation
context rules for pedestrian formations,” in SIGGRAPH Symposium on Applied Perception in
Graphics and Visualization (APGV’08), pp. 75–82, 2008.

[8] R. McDonnell, M. Larkin, S. Dobbyn, S. Collins, and C. O’Sullivan, “Clone attack! percep-
tion of crowd variety,” ACM Transactions on Graphics (SIGGRAPH 2008), vol. 27, no. 3,
pp. 26:1–26:8, 2008.

[9] M. Pražák, R. McDonnell, L. Kavan, and C. O’Sullivan, “A perception based metric for com-
paring human motion,” in Eurographics Ireland Workshop, pp. 75–80, 2009.

[10] J. H. Clark, “Hierarchical Geometric Models for Visible Surface Algorithms,” Communica-
tions of the ACM, vol. 19, pp. 547–554, October 1976.

[11] L. Williams, “Pyramidal Parametrics,” SIGGRAPH Comput. Graph., vol. 17, pp. 1–11, July
1983.

[12] M. Larkin, Level of Detail Representations and Variation Methods for the Rendering of Large
Animated Crowds. PhD thesis, Trinity College Dublin, Dublin, Ireland., December 2010.

167

168 BIBLIOGRAPHY

[13] S. Paris, A. Gerdelan, and C. O’Sullivan, “CA-LOD: Collision Avoidance Level of Detail for
Scalable, Controllable Crowds,” in Motion in Games (A. Egges, R. Geraerts, and M. Over-
mars, eds.), vol. 5884 of Lecture Notes in Computer Science, pp. 13–28, Springer Berlin /
Heidelberg, 2009.

[14] R. McDonnell, S. Dobbyn, and C. O’Sullivan, “LOD Human Representations: A Compara-
tive Study,” in International Workshop on Crowd Simulation (V-CROWDS’05), pp. 101–115,
2005.

[15] R. McDonnell, S. Dobbyn, S. Collins, and C. O’Sullivan, “Perceptual Evaluation of LOD
Clothing for Virtual Humans,” in ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA’06), pp. 117–126, 2006.

[16] P. Kanyuk, “Brain Springs: Fast Physics for Large Crowds in WALL-E,” IEEE Computer
Graphics and Applications, vol. 29, pp. 19–25, 2009.

[17] D. Ryu and P. Kanyuk, “Rivers of rodents: An animation-centric crowds pipeline for rata-
touille,” tech. rep., Pixar Technical Memo 07-02, May 2007.

[18] D. Thalmann, C. Hery, S. Lippman, H. Ono, S. Regelous, and D. Sutton, “Crowd and Group
Animation,” in SIGGRAPH ’04: ACM SIGGRAPH 2004 Course Notes, (New York, NY,
USA), p. 34, ACM, 2004.

[19] S. Donikian, “A Comparative Review of Reactive Behaviour Models as Proposed in Computer
Graphics and Cognitive Sciences,” in Motion in Games (MIG2009), vol. 5884, (Zeist, the
Netherlands), pp. 63–74, Springer-Verlag LNCS, 2009.

[20] C. W. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioural Model,” in SIG-
GRAPH ’87: Proceedings of the 14th annual conference on Computer graphics and interac-
tive techniques, (New York City, New York), pp. 25–34, ACM, 1987.

[21] W. T. Reeves, “Particle Systems—a Technique for Modeling a Class of Fuzzy Objects,” ACM
Trans. Graph., vol. 2, no. 2, pp. 91–108, 1983.

[22] M. E. Bratman, Intentions, Plans, and Practical Reason, Agents. Cambridge, Massachusetts:
Harvard University Press, 1987.

[23] J. V. den Berg, Path Planning in Dynamic Environments. PhD thesis, Utrecht University, The
Netherlands, 2007.

[24] I. Karamouzas, P. Heil, P. van Beek, and M. H. Overmars, “A Predictive Collision Avoidance
Model for Pedestrian Simulation,” in Motion in Games (MIG2009), vol. 5884, (Zeist, the
Netherlands), pp. 40–52, Springer-Verlag LNCS, 2009.

[25] R. Geraerts, Sampling-based Motion Planning: Analysis and Path Quality. PhD thesis,
Utrecht University, Utrecht, Netherlands, 2006.

[26] R. Geraerts and M. H. Overmars, “The Corridor Map Method: A General Framework for
Real-Time High-Quality Path Planning,” Computer Animation and Virtual Worlds (CAVW),
vol. 18, pp. 107–119, 2007.

[27] C. J. Scogings and K. A. Hawick, “Altruism Amongst Spatial Predator-Prey Animats,” in
Artificial Life XI, (Winchester, United Kingdom), August 2008.

[28] K. A. Hawick, C. J. Scogings, and H. A. James, “Defensive Spiral Emergence in a Predator-
Prey Model,” Complexity International, vol. 12, p. 37, 2008.

BIBLIOGRAPHY 169

[29] I. Lebar-Bajec, N. Zimic, and M. Mraz, “Simulating Flocks on the Wing: The Fuzzy Ap-
proach,” Journal of Theoretical Biology, vol. 233, no. 2, pp. 199–220, 2005.

[30] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Phys. Rev. E, vol. 51,
pp. 4282–4286, May 1995.

[31] R. Wiedemann, “Simulation des Straßenverkehrsflusses,” tech. rep., Schriftenreihe des Insti-
tuts für Verkehrswesen, Heft 8, Universität (TH) Karlsruhe, Karlsruhe, Deutschland, 1974.

[32] P. G. Gipps, “A behavioural car following model for computer simulation,” Transportation
Research Part B: Methodological, vol. 15, no. 2, p. 105111, 1981.

[33] S. Krauß, P. Wagner, and C. Gawron, “Metastable states in a microscopic model of traffic
flow,” Physical Review E, vol. 55, pp. 5597 – 5602, May 1997.

[34] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations for mobile
robot navigation,” in IEEE Conference on Robotics and Automation, (Sacramento, Califor-
nia), pp. 1398–1404, April 1991.

[35] R. A. Brooks, “A robust layered control system for a mobile robot.,” IEEE Journal of Robotics
and Automation, vol. RA-2, no. 1, pp. 14–23, 1986.

[36] C. W. Reynolds, “Steering behaviors for autonomous characters,” in Game Developers Con-
ference, 1999.

[37] R. Narain, A. Golas, S. Curtis, and M. C. Lin, “Aggregate dynamics for dense crowd sim-
ulation,” in ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), vol. 28,
p. 122:1122:8, 2009.

[38] C. W. Reynolds, “Evolution of Corridor Following Behavior in a Noisy World,” in Third
International Conference on Simulation of Adaptive Behavior (SAB94) (D. Cliff, P. Husbands,
J.-A. Meyer, and S. Wilson, eds.), pp. 402–410, 1994.

[39] C. W. Reynolds, “Competition, Coevolution and the Game of Tag,” in Artificial Life IV
(R. Brooks and P. Maes, eds.), pp. 59–69, 1994.

[40] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Evolving Neural Network Agents in the
NERO Video Game,” in IEEE 2005 Symposium on Computational Intelligence and Games
(CIG’05), (Piscataway, New Jersey), 2005. Best Paper Award.

[41] K. O. Stanley, R. Cornelius, R. Miikkulainen, T. D’Silva, and A. Gold, “Real-Time Learning
in the NERO Video Game,” in Artificial Intelligence and Interactive Digital Entertainment
Conference Demonstration Program (AIIDE 2005), 2005.

[42] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov, K. O. Stanley, and C. H. Yong,
Computational Intelligence: Principles and Practice, ch. Computational Intelligence in
Games, pp. 155–191. IEEE Computational Intelligence Society, 2006.

[43] R. Miikkulainen, “Creating Intelligent Agents in Games,” The Bridge, vol. 36, no. 4, pp. 5–13,
2006.

[44] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-Time Neuroevolution in the NERO
Video Game,” IEEE Transactions on Evolutionary Computation, vol. 9, pp. 653–668, Decem-
ber 2005.

[45] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-Time Evolution of Neural Networks
in the NERO Video Game,” in Twenty-First National Conference on Artificial Intelligence
(AAAI06), (Boston, Massachusetts), pp. 1671–1674, 2006.

170 BIBLIOGRAPHY

[46] A. Gerdelan and N. H. Reyes, “A Novel Hybrid Fuzzy A* Robot Navigation System for Target
Pursuit and Obstacle Avoidance,” in First Korean-New Zealand Joint Workshop on Advance
of Computational Intelligence Methods and Applications, vol. 1, (Auckland, New Zealand),
pp. 75–79, 2006.

[47] A. Gerdelan and N. Reyes, “Synthesizing Adaptive Navigational Robot Behaviours Using
a Hybrid Fuzzy A* Approach,” in Computational Intelligence, Theory and Applications
(B. Reusch, ed.), pp. 699–710, Springer Berlin Heidelberg, 2006.

[48] A. Gerdelan, D. Iskandar, A. F. Djohar, and N. H. Reyes, “Utilising the Hybrid Fuzzy A*
Algorithm in a Cooperative Multi-Agent System,” in 4th Conference on Neuro-Computing
and Evolving Intelligence (NCEI’06) and 6th International Conference on Hybrid Intelligent
Systems (HIS ’06), 2006.

[49] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, June 1965.

[50] R. E. Bellman and L. A. Zadeh, “Decision-making in a fuzzy environment,” Management
Science, vol. 17, pp. B141–B164, December 1970.

[51] I. Newton, Opticks, ch. Prop. II, Theor. II. London, England: Royal Society, London, 1704.

[52] M. Dougherty, K. Fox, M. Cullip, and M. Boero, “Technological advances that impact on
microsimulation modelling,” Transport Reviews, vol. 20, no. 2, pp. 145–171, 2000.

[53] A. Gerdelan, “A solution for streamlining intelligent agent-based traffic into 3D simulations
and games,” Tech. Rep. CSTN-072, CSSG, Institute of Information and Mathematical Sci-
ences, Massey University, Albany, New Zealand, January 2009.

[54] A. Gerdelan, “Driving Intelligence: A New Architecture and Novel Hybrid Algorithm for
Next-Generation Urban Traffic Simulation,” Tech. Rep. CSTN-079, CSSG, Institute of In-
formation and Mathematical Sciences, Massey University, Albany, New Zealand, February
2009.

[55] A. Gerdelan and N. H. Reyes, “Towards A Generalised Hybrid Path-Planning and Motion
Control System with Auto-Calibration for Animated Characters in 3D Environments,” in Ad-
vances in Neuro-Information Processing (M. Köppen, N. Kasabov, and G. Coghill, eds.),
vol. 5506 of Lecture Notes in Computer Science, pp. 1079–1086, Springer Berlin / Heidel-
berg, 2009.

[56] A. Gerdelan, “Architecture design for self-training intelligent vehicle-driving agents:
paradigms and tools,” Tech. Rep. CSTN-088, CSSG, Institute of Information and Mathe-
matical Sciences, Massey University, Albany, New Zealand, April 2009.

[57] A. Gerdelan, “Auto-Training Animated Character Motion: A Rule-Base Tuning Hybrid
Fuzzy-Genetic Algorithm,” Tech. Rep. CSTN-098, CSSG, Institute of Information and Math-
ematical Sciences, Massey University, Albany, New Zealand, June 2009.

[58] A. Gerdelan and C. O’Sullivan, “A Genetic-Fuzzy System for Optimising Agent Steering,”
Computer Animation and Virtual Worlds, vol. 21, p. 453461, May 2010.

[59] D. P. Playne, A. Gerdelan, A. Leist, C. J. Scogings, and K. A. Hawick, “Simulation Mod-
elling and Visualisation: Toolkits for Building Simulated Worlds,” Research Letters in the
Information and Mathematical Sciences, Massey University, vol. 12, pp. 25–50, 2008.

[60] D. P. Playne, A. Gerdelan, A. Leist, C. J. Scogings, and K. A. Hawick, “Simulation Mod-
elling and Visualisation: Toolkits for Building Simulated Worlds,” Tech. Rep. CSTN-052,
CSSG, Institute of Information and Mathematical Sciences, Massey University, Albany, New
Zealand, March 2008.

BIBLIOGRAPHY 171

[61] S. Singh, M. Kapadia, P. Faloutsos, and G. Reinmann, “SteerBench: a benchmark suite for
evaluating steering behaviors,” Computer Animation and Virtual Worlds, vol. 1, pp. 1546–
4261, 2009.

[62] S. Singh, M. Naik, M. Kapadia, P. Faloutsos, and G. Reinmann, “Watch Out! A Framework
for Evaluating Steering Behaviors,” Lecture Notes in Computer Science: Motion in Games,
vol. 5277/2008, pp. 200–209, 2008.

[63] C. Ennis, R. McDonnell, and C. O’Sullivan, “Seeing is Believing: Body Motion Dominates
in Multisensory Conversations,” ACM Transactions on Graphics (SIGGRAPH 2010), vol. 29,
no. 4, p. Article 29, 2010.

[64] J. E. McHugh, R. McDonnell, C. O’Sullivan, and F. N. Newell, “Perceiving emotion in
crowds: the role of dynamic body postures on the perception of emotion in crowded scenes,”
Experimental Brain Research, vol. 204, no. 3, pp. 361–372, 2010.

[65] J. K. Hodgins, S. Jörg, C. O’Sullivan, S.-I. Park, and M. Mahler, “The Saliency of Anomalies
in Animated Human Characters,” ACM Transactions on Applied Perception, vol. 7, p. Article
1, May 2010.

[66] S. Jörg, J. Hodgins, and C. O’Sullivan, “The perception of finger motions,” in Proceedings of
the 7th Symposium on Applied Perception in Graphics and Visualization (APGV 2010), (New
York, NY, USA), pp. 129–133, ACM, July 2010.

[67] C. Ennis, C. Peters, and C. O’Sullivan, “Perceptual Effects of Scene Context And Viewpoint
for Virtual Pedestrian Crowds,” ACM Transactions on Applied Perception, vol. 8, no. 2, p. To
appear, 2011.

[68] G. Junker, Pro OGRE 3D Programming. APress, 2006.

[69] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-
Weinstein, “ROAMing terrain: real-time optimally adapting meshes,” in VIS ’97: Proceedings
of the 8th conference on Visualization ’97, (Los Alamitos, CA), pp. 81–88, IEEE Computer
Society Press, 1997.

[70] K. A. Hawick and A. Gerdelan, “Software Integration Architectures for Agents,” Tech. Rep.
CSTN-054, CSSG, Institute of Information and Mathematical Sciences, Massey University,
Albany, New Zealand, May 2008.

[71] L. Skrba, L. Reveret, F. Htroy, M.-P. Cani, and C. O’Sullivan, “Animating Quadrupeds: Meth-
ods and Applications,” Computer Graphics Forum, vol. 28, pp. 1541–1560, 2009.

[72] R. M. Zlot, A. T. Stentz, M. B. Dias, and S. Thayer, “Multi-robot exploration controlled by
a market economy,” in IEEE International Conference on Robotics and Automation (IEEE,
ed.), vol. 3, pp. 3016–3023, May 2002.

[73] W. Sheng and Q. Yang, “Peer-to-peer multi-robot coordination algorithms: petri net based
analysis and design,” in Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME
International Conference on, pp. 1407–1412, July 2005.

[74] A. Gerdelan, “Artificial Intelligence in Robot Soccer,” honours thesis, bachelor of engineer-
ing, Institute of Information and Mathematical Sciences, Massey University, Albany, New
Zealand, October 2006.

[75] S. Russell and P. Norvig, Artifcial Intelligence: A Modern Approach. Englewood Cliffs, New
Jersey: Prentice Hall, 2nd ed., 2003.

172 BIBLIOGRAPHY

[76] R. Simmons, E. Krotkov, L. Chrisman, F. Cozman, R. Goodwin, M. Hebert, L. Katragadda,
S. Koenig, G. Krishnaswamy, Y. Shinoda, W. Whittaker, and P. Klarer, “Experience with
Rover Navigation for Lunar-Like Terrains,” in Intelligent Robots and Systems (IROS ’95),
vol. 1, (Pittsburgh, Pennsylvania), pp. 441–446, 1995.

[77] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementation, ch. D* Al-
gorithm, pp. 536–546. MIT Press, 2005.

[78] G. Lawes and M. Barlow, “Visual Realism and Decision Making: A Novel Approach to
Real-Time Maritime Battlespace Visualisation,” in SimTecT 2007 Conference Proceedings,
Virtual Environment and Simulation Laboratory (VESL), School of Information Technology
and Electrical Engineering University of New South Wales at the Australian Defence Force
Academy, Simulation Industry Association of Australia, 2007.

[79] T. Barron, Strategy Game Programming With DirectX 9.0. Wordware, 2003.

[80] J. D. Funge, Artifcial Intelligence for Computer Games. Wellesley, Massachusetts: A K
Peters, Ltd., 2004.

[81] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press,
2005.

[82] C. H. Messom, “Genetic Algorithms for Autotuning Mobile Robot Motion Control,” Research
Letters in the Information and Mathematical Sciences, Massey University, vol. 3, pp. 129–
134, 2002.

[83] L. A. Pipes, “An Operational Analysis of Traffic Dynamics,” Journal of Applied Physics,
vol. 24, no. 3, pp. 274–281, 1953.

[84] S. R. Perkins and J. Harris, “Criteria for Traffic Conflict Characteristics,” Tech. Rep.
GMR632, General Motors Corporation, Warren, Michigan, 1967.

[85] S. R. Perkins and J. I. Harris, “Traffic Conflict Characteristics: Accident potential at inter-
sections,” Highway Research Record, Highway Research Board, Washington DC, vol. 225,
pp. 45–143, 1968.

[86] W. Leutzbach and R. Wiedemann, “Development and applications of traffic simulation models
at the Karlsruhe Institut für Verkehrswesen,” Traffic Eng. Control, vol. 27, p. 270278, 1986.

[87] S. Krauß, Microscopic Modeling of Traffic Flow: Investigation of Collision Free Vehicle Dy-
namics. PhD thesis, Mathematisches Institut, Universität zu Köln, 1998.

[88] L. Bloomberg and J. Dale, “Comparison of vissim and corsim traffic simulation models on
a congested network,” Transportation Research Record: Journal of the Transportation Re-
search Board, vol. 1727/2000, pp. 52–60, January 2007.

[89] J. Won, S. Lee, S. Lee, and T. H. Kim, “Establishment of Car Following Theory Based on
Fuzzy-Based Sensitivity Parameters,” Advances in Multimedia Modeling, vol. 4352/2006,
pp. 613–619, 2006.

[90] J. Hamill, Level of Detail Techniques for Real-Time Urban Simulation. PhD thesis, Trinity
College Dublin, Dublin, Ireland, August 2005.

[91] J. Hamill and C. O’Sullivan, “Virtual Dublin - a framework for real-time urban simulation,”
in Winter Conference on Computer Graphics 11, pp. 1–3, 2003.

BIBLIOGRAPHY 173

[92] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementation, ch. A* Al-
gorithm, pp. 527–536. MIT Press, 2005.

[93] K. A. Hawick, D. P. Playne, A. Leist, A. Gerdelan, and C. J. Scogings, “Its About Time: the
Role of Time in Simulations,” tech. rep., CSSG, Institute of Information and Mathematical
Sciences, Massey University, Albany, New Zealand, January 2009.

[94] S. A. Boxill, “An Evaluation of 3-D Traffic Simulation Modeling Capabilities,” tech. rep.,
Center for Transportation Training and Research, Texas Southern University, Houston, Texas,
June 2007.

[95] T. Wan and W. Tang, “An intelligent vehicle model for 3D visual traffic simulation,” in In-
ternational Conference on Visual Information Engineering (VIE 2003), pp. 206– 209, July
2003.

[96] J. Ruttle, “Virtual Traffic Simulation,” Master’s thesis, Trinity College Dublin, Ireland,
September 2008.

[97] R. Hughes and B. Schroeder, “3D Visualization and Micro-Simulation Applied to the Iden-
tification and Evaluation of Geometric and Operational ‘Solutions’ for Improving Visually
Impaired Pedestrian Access to Roundabouts and Channelized Turn Lanes,” in 5th Interna-
tional Visualization in Transportation Symposium and Workshop, (Denver, Colorado), Octo-
ber 2006.

[98] R. G. Hughes and D. Harkey, “Evaluation and Application of Pedestrian Modeling Capabili-
ties Using Computer Simulation,” tech. rep., Highway Safety Research Center, University of
North Carolina, June 2002.

[99] R. G. Hughes, S. Turner, and H. Landphair, “On the Integrated Application of Modeling, Sim-
ulation, and 3D/4D Visualization: the Concept of a ‘Laboratory’ for Non-Motorized Travel
Research,” in 9th ITS World Congress, (Chicago, Illinois), October 2002.

[100] A. Gerdelan, “Practicum III: Hybrid Algorithms for Soccer Robots,” tech. rep., School of
Engineering and Advanced Technology, Massey University, Albany, New Zealand, March
2006.

[101] A. Gerdelan, “A Novel Motor Control Algorithm for Two-Wheeled and Caterpillar-Tracked
Autonomous Vehicles Using a Fuzzy Navigation Abstraction,” honours year engineering jour-
nal articles, School of Engineering and Advanced Technology, Massey University, Albany,
New Zealand, 2006.

[102] B. D. Bryant and R. Miikkulainen, “Neuroevolution for adaptive teams,” in Congress on Evo-
lutionary Computation CEC ’03, vol. 3, pp. 2194–2201, 8-12 December 2003.

[103] B. D. Bryant and R. Miikkulainen, “Exploiting Sensor Symmetries in Example-based Train-
ing for Intelligent Agents,” in IEEE Symposium on Computational Intelligence and Games,
pp. 90–97, May 2006.

[104] O. Córdon, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena, “Ten years of genetic
fuzzy systems: current framework and new trends,” Fuzzy Sets and Systems, vol. 141, no. 1,
pp. 5–31, 2004.

[105] S. F. Smith, A learning system based on genetic adaptive algorithms. PhD thesis, Department
of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, 1980.

[106] C. Darwin, On the Origin of Species. Albemarle Street, London: John Murray, 1859.

174 BIBLIOGRAPHY

[107] K. M. Passino and S. Yurkovich, Fuzzy Control. Menlo Park, California: Addison Wesley
Longman, 1998.

[108] B. F. Allen and P. Faloutsos, “Evolved Controllers for Simulated Locomotion,” in Second
International Workshop, Motion in Games, vol. 5884, (Zeist, The Netherlands), Springer-
Verlag LNCS, 2009.

[109] M. Mohammadian and R. J. Stonier, “Fuzzy Logic and Genetic Algorithms for Intelligent
Control and Obstacle Avoidance,” Complexity International, vol. 2, pp. 149–157, Apr. 1995.

[110] R. Neves and M. L. Netto, “Evolutionary Search for Optimization of Fuzzy Logic Con-
trollers,” in 1st International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD), vol. 1 of Hybrid Systems and Applications I, (Singapore), pp. 202–206, Springer,
Nov. 18-22 2002.

[111] Valve Software, “Half Lambert http://developer.valvesoftware.com/wiki/Half Lambert.” Pub-
lic developer wiki, February 2010.

[112] J. H. Lambert, Photometria sive de mensure de gratibus luminis, colorum et umbrae. Augs-
burg, Bayern: Eberhard Klett, 1760.

[113] R. L. Cook and K. E. Torrance, “A Reflectance Model for Computer Graphics,” ACM Trans.
Graph., vol. 1, pp. 7–24, January 1982.

[114] B. Phong, Illumination for computer generated pictures. PhD thesis, University of Utah,
1973.

[115] J. Mitchell, “Shading in Valve’s Source Engine,” in Course 26: Advanced Real-Time Render-
ing in 3D Graphics and Games. SIGGRAPH, (Boston, MA), 2006.

[116] R. Deriche, “Recursively implementating the Gaussian and its derivatives,” tech. rep., INRIA,
1993.

[117] L. G. Shapiro and G. C. Stockman, Computer Vision. Upper Saddle River, NJ: Prentice-Hall,
2001.

[118] R. C. González and R. E. Woods, Digital Image Processing. Prentice Hall, 3rd ed., 2008.

[119] T. Zuvich, “Vehicle dynamics for racing games,” in Game Developers Conference, 2000.

[120] P. G. Hewitt, Conceptual Physics, ch. Solids, pp. 202, 210, 325n. Addison Wesley Longman,
1998.

[121] M. Wloka, ““Batch, Batch, Batch:” What Does it Really Mean?”
http://www.nvidia.de/docs/io/8230/batchbatchbatch.pdf.” nVidia, October 2010.

[122] A. Gerdelan, “Mechanix: Vehicle Mechanical Simulation,” Tech. Rep. CSTN-118, CSSG, In-
stitute of Information and Mathematical Sciences, Massey University, Albany, New Zealand,
November 2010.

[123] A. Gerdelan, “Grid-Ireland and e-Research Review for KAREN and BeSTGRID,” tech. rep.,
KAREN, Wellington, New Zealand, September 2008.

[124] I. Newton, Philosophiæ Naturalis Principia Mathematica. London, England: apud Sa. Smith,
1687.

[125] R. A. Serway and R. J. Beichner, Physics for Scientists and Engineers with Modern Physics,
Volume II, ch. 23.3, pp. 714, 1085. Brooks Cole, 2000.

BIBLIOGRAPHY 175

[126] R. A. Serway and R. J. Beichner, Physics for Scientists and Engineers with Modern Physics,
Volume II. Brooks Cole, fifth ed., 2000.

[127] P. G. Hewitt, Conceptual Physics. Addison Wesley Longman, 8th ed., 1998.

[128] A. Leist, D. Playne, and K. Hawick, “Exploiting Graphical Processing Units for Data-Parallel
Scientific Applications,” Concurrency and Computation: Practice and Experience, vol. 21,
pp. 2400–2437, December 2009.

[129] K. A. Hawick, A. Leist, and D. P. Playne, “Parallel Graph Component Labelling with GPUs
and CUDA,” Parallel Computing, vol. 36, pp. 655–678, 2010.

[130] K. Hawick, A. Leist, and D. Playne, “Regular Lattice and Small-World Spin Model Simula-
tions using CUDA and GPUs,” tech. rep., Computer Science, Massey University, 2009. To
appear in Int. J. Parallel Programming (2010).

	Abstract
	Overview and Aim of This Thesis
	Method of Experimentation

	A Brief History of Motion Control in Animation
	Introduction
	Overview of Key Algorithms
	Boids and Flocking
	Helbing's Crowds

	Evolving Motion Controllers
	rtNEAT

	Fuzzy Logic Controllers
	Overview
	Standard Pattern 2-Input Fuzzy Controller
	As Part of a Hybrid Controller

	Assembling a Toolkit for Doing Science with Simulations
	Overview
	Constructing a 3D Simulation
	A Delta-State Video Capture Tool
	Real-Time Data Plots and Time Tools
	Measurements of Uncertainty

	A Modular Agent Middleware
	Introduction
	Agent Society Model
	Modular Architecture
	Modelling the Environment
	Agent Behaviour
	Summary
	Possible Extensions to this Architecture

	On Design of Automatic Calibration Systems
	Introduction
	Hybrid Algorithm
	Visualisation
	Proposed Self-Training Architecture
	Conclusions

	Adding Agent-Based Road Networks To Simulations
	Introduction
	Representing Complex Road Networks in 3D Simulations
	Architecture for Non-Intrusive Data Structures
	Rapid Construction of Virtual Road Networks
	Future Works
	Discussion and Conclusions

	Agents and Motion Controllers for Road Vehicles
	Introduction
	Agent Paradigm
	Path Planning
	Reactive Vehicle Control
	Discussion and Conclusions

	On Simulation Frameworks for Automatic Calibration Systems
	Introduction
	Works of Note
	Initial Approach
	Preliminary Experiment
	Discussion and Conclusions

	A Genetic-Fuzzy System for Optimising Motion
	Introduction
	Related Work
	Background: Fuzzy Controllers in Agent Steering
	Architecture of the GFS
	Benchmarking the Genetic Algorithm Component
	Experiments and Results
	Conclusions and Future Works

	Mechanix: Vehicle Mechanical Simulation
	Overview of Architecture
	Visualisation
	Drive-train Simulation
	Resistance Forces
	Effective Torque
	Suspension Simulation
	Trailers, Articulated Vehicles, Trains & Trams
	Limitations

	Gremlin: A System for Benchmarking Mechanical Motion
	Introduction
	Definition of Test-Course Environment
	Evaluation Method
	Control System Design
	Experiments and Results
	Future Works

	Conclusions and Discussion
	Review of Fuzzy Motion Controllers
	Conclusions on Genetic Hybrid Systems
	Overarching Conclusions
	Future Works

	Appendices
	Summary of Publications
	Peer-Reviewed Articles
	Technical Reports

	Reference Cards: Simulation Models and Specifications
	Glossary of Terms

