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Before we do anything - normals

● Q. What does a normal do?
● Q. How do we usually calculate 

them?
● A per-vertex unit vector
● Interpolated to per-fragment
● If all per-vertex normals on triangle 

face the same way
– Flat face shading

● If each per-vertex normal is average of 
surrounding faces
– Smoothed face shading

Usually calculated for a face

Flat shading

Smooth shading



  

Literature

● Bui Tuong Phong's PhD thesis “Illumination for 
computer generated pictures”, 1973 – U.Utah
– Also describes a per-pixel shading method “Phong Shading”

● James Blinn “Models of light reflection for computer 
synthesized pictures” proc. CGIT, 1977

● Blinn-Phong was the built-in default lighting method in 
older GL and D3D



  

Background

● Realistic lighting models based on Optics (physics of 
light)

● Radiosity – consider energy absorption by surfaces
● Light rays that reflect/refract on multiple surfaces
● Hence “global illumination”
● Expensive to calculate



  

Background

● Real-time rendering favours quick approximations
● Local illumination techniques

(only consider one surface)
● Diminishing colour with distance from view (Doom)
● Manually pre-setting colour of world areas (DN3D)

– We still do this with pre-rendered light maps
● Mixture of light maps and dynamic lighting (Quake)
● Introduce some GI techniques?



  

Shading Models

● Per-Facet
● Gouraud (per-vertex and then interpolated)

Henri Gouraud "Continuous shading of curved surfaces" (1971),
● Phong (per-pixel or per-fragment)
● Q. Where would we code each of these?

demos



  

Ambient Lighting

● Approximate accumulation of general background light 
reflections by a single number

“Too hard – everything gets +(0.1,0.1,0.1)”



  

Ambient Reflection
i_a = l_a * k_a

vec3 l_a = vec3 (0.2, 0.2, 0.2);
vec3 k_a = vec3 (1.0, 0.0, 0.0); Reflection / material 

colour

Light's ambient colour



  

Diffuse Reflection
(Lambertian Reflectance)

● Approximate light hitting surface 
and scattering in all directions

● Optics model
– Johann Heinrich Lambert, 

“Photometria”, 1760.
● As surface is perpendicular to light 

= most reflective
● Parallel to light = not reflective at 

all
● Q. How can we calculate this 

angle/factor idea?

Incident light
diffuse (scattered)

Note: perfect (equal) diffusion is assumed



  

The Vector Dot-Product

● Gives cosine of angle between 2 vectors
● Perpendicular = 0
● Parallel, same direction = 1
● Parallel, opposing directions = -1
● No notion of left/right side

Normalise
vectors
first!

Q. Angle between light 
and surface?

n light_dir



  
vec3 l_d = vec3 (0.8, 0.8, 0.8);
vec3 k_d = vec3 (1.0, 0.0, 0.0); Make sure d.prod >= 0.0

Diffuse Reflection
i_d = l_d * k_d *

dot (-light_dir, n)



  

Specular Reflection Model

● Approximate light that hits surface and entirely reflects 
in one direction, around the normal (like a billiard ball)

● Smoother surfaces = shinier = more specular reflection
● Intensity is 1.0 when reflecting directly into eye
● Intensity is 0.0 when reflection is perpendicular to eye



  

Specular Reflection
i_s = l_s * k_s *

pow (dot (r, v), spec_exp)

vec3 l_s = vec3 (1.0, 1.0, 1.0);
vec3 k_s = vec3 (1.0, 1.0, 1.0);



  

Specular Reflection

● Work out r and v, dot product of them to get factor
● When reflected light points right into eye = full specular
● There is also an exponent which we can adjust

n

incident 
light,
light_dir

reflected light, r

vector to
viewer, v



  

Specular Highlights

Exponent = 100 Exponent = 10



  

Phong Lighting is the Sum
i = i_a + i_d + i_s



  

Blinn-Phong

● Lose a small amount of accuracy in specular equation
● Little bit cheaper to calculate
● Replace reflect() with a half-way vector:

vec3 h = normalize (v - light_dir); 
vec3 I_s = l_s * k_s * pow (dot (h, n), spec_exp);

n

incident 
light,
light_dir

reflected light, r

vector to
viewer, v

h



  

Blinn-Phong

● Reduces specular power by about half –> double the exponent



  

[Somewhat rhetorical] Questions

● Q. How can we model a non-shiny surface?
● Q. Is any real surface completely matte?
● Q. What is physically inaccurate about Phong lighting?
● Q. Do any real surfaces have a non-white specular colour?
● Q. What is missing from this lighting model to make it 

convincing?



  

Pause

● If this is the last slide:
● Do a Phong tutorial
● Read any of the textbook chaps.

– Phong lighting
– Shading models
– More advanced / general lighting
– Global versus local illumination



  

Materials and Textures

● Q. How can we combine textures with Phong lighting?



  

Warning: Corrupted Normals

● Q. Why should we never apply a un-equal scaling to 
a normal?

● Q. How can we avoid this?
– Create a separate model matrix with just the rotations “normal 

matrix” or
– Take inverse (transpose (model_matrix) instead or
– Don't do lighting on things with uneven scaling or
– Don't ever do uneven scaling



  

Warning: Negative dot products

● Sometimes a dot-product produces a negative number
● Q. When does this happen?
● Q. What unwanted visual effect would a negative 

dot-product give us?
● To avoid this:

– float result = max (0.0, dot (a, b));



  

Point / Directional / Spot Lights

● Were built-in
● Spotlight (Webb?)



  

Gamma Correction

● Colours and voltages
● Don't correct textures
● sRGB colour palette



  

Gamma Correction

colour = pow (colour, vec3 (2.2, 2.2, 2.2));

Gives you the full range of colour intensities on your 
display



  

Questions

● Q. More than one light? How?
● Q. Problems with that?



  

Further Reading

● Do a Phong lighting tutorial first
● Challenge: Can you figure out how to roll-off the light 

with distance?
● Deferred lighting and deferred shading, G-buffers
● BDRF
● Radiosity
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