

-=Bui Tuong Phong's Lighting=-
University of Utah, 1973

but with shaders

Anton Gerdelan – Trinity College Dublin

Before we do anything - normals

● Q. What does a normal do?
● Q. How do we usually calculate

them?
● A per-vertex unit vector
● Interpolated to per-fragment
● If all per-vertex normals on triangle

face the same way
– Flat face shading

● If each per-vertex normal is average of
surrounding faces
– Smoothed face shading

Usually calculated for a face

Flat shading

Smooth shading

Literature

● Bui Tuong Phong's PhD thesis “Illumination for
computer generated pictures”, 1973 – U.Utah
– Also describes a per-pixel shading method “Phong Shading”

● James Blinn “Models of light reflection for computer
synthesized pictures” proc. CGIT, 1977

● Blinn-Phong was the built-in default lighting method in
older GL and D3D

Background

● Realistic lighting models based on Optics (physics of
light)

● Radiosity – consider energy absorption by surfaces
● Light rays that reflect/refract on multiple surfaces
● Hence “global illumination”
● Expensive to calculate

Background

● Real-time rendering favours quick approximations
● Local illumination techniques

(only consider one surface)
● Diminishing colour with distance from view (Doom)
● Manually pre-setting colour of world areas (DN3D)

– We still do this with pre-rendered light maps
● Mixture of light maps and dynamic lighting (Quake)
● Introduce some GI techniques?

Shading Models

● Per-Facet
● Gouraud (per-vertex and then interpolated)

Henri Gouraud "Continuous shading of curved surfaces" (1971),
● Phong (per-pixel or per-fragment)
● Q. Where would we code each of these?

demos

Ambient Lighting

● Approximate accumulation of general background light
reflections by a single number

“Too hard – everything gets +(0.1,0.1,0.1)”

Ambient Reflection
i_a = l_a * k_a

vec3 l_a = vec3 (0.2, 0.2, 0.2);
vec3 k_a = vec3 (1.0, 0.0, 0.0); Reflection / material

colour

Light's ambient colour

Diffuse Reflection
(Lambertian Reflectance)

● Approximate light hitting surface
and scattering in all directions

● Optics model
– Johann Heinrich Lambert,

“Photometria”, 1760.
● As surface is perpendicular to light

= most reflective
● Parallel to light = not reflective at

all
● Q. How can we calculate this

angle/factor idea?

Incident light
diffuse (scattered)

Note: perfect (equal) diffusion is assumed

The Vector Dot-Product

● Gives cosine of angle between 2 vectors
● Perpendicular = 0
● Parallel, same direction = 1
● Parallel, opposing directions = -1
● No notion of left/right side

Normalise
vectors
first!

Q. Angle between light
and surface?

n light_dir

vec3 l_d = vec3 (0.8, 0.8, 0.8);
vec3 k_d = vec3 (1.0, 0.0, 0.0); Make sure d.prod >= 0.0

Diffuse Reflection
i_d = l_d * k_d *

dot (-light_dir, n)

Specular Reflection Model

● Approximate light that hits surface and entirely reflects
in one direction, around the normal (like a billiard ball)

● Smoother surfaces = shinier = more specular reflection
● Intensity is 1.0 when reflecting directly into eye
● Intensity is 0.0 when reflection is perpendicular to eye

Specular Reflection
i_s = l_s * k_s *

pow (dot (r, v), spec_exp)

vec3 l_s = vec3 (1.0, 1.0, 1.0);
vec3 k_s = vec3 (1.0, 1.0, 1.0);

Specular Reflection

● Work out r and v, dot product of them to get factor
● When reflected light points right into eye = full specular
● There is also an exponent which we can adjust

n

incident
light,
light_dir

reflected light, r

vector to
viewer, v

Specular Highlights

Exponent = 100 Exponent = 10

Phong Lighting is the Sum
i = i_a + i_d + i_s

Blinn-Phong

● Lose a small amount of accuracy in specular equation
● Little bit cheaper to calculate
● Replace reflect() with a half-way vector:

vec3 h = normalize (v - light_dir);
vec3 I_s = l_s * k_s * pow (dot (h, n), spec_exp);

n

incident
light,
light_dir

reflected light, r

vector to
viewer, v

h

Blinn-Phong

● Reduces specular power by about half –> double the exponent

[Somewhat rhetorical] Questions

● Q. How can we model a non-shiny surface?
● Q. Is any real surface completely matte?
● Q. What is physically inaccurate about Phong lighting?
● Q. Do any real surfaces have a non-white specular colour?
● Q. What is missing from this lighting model to make it

convincing?

Pause

● If this is the last slide:
● Do a Phong tutorial
● Read any of the textbook chaps.

– Phong lighting
– Shading models
– More advanced / general lighting
– Global versus local illumination

Materials and Textures

● Q. How can we combine textures with Phong lighting?

Warning: Corrupted Normals

● Q. Why should we never apply a un-equal scaling to
a normal?

● Q. How can we avoid this?
– Create a separate model matrix with just the rotations “normal

matrix” or
– Take inverse (transpose (model_matrix) instead or
– Don't do lighting on things with uneven scaling or
– Don't ever do uneven scaling

Warning: Negative dot products

● Sometimes a dot-product produces a negative number
● Q. When does this happen?
● Q. What unwanted visual effect would a negative

dot-product give us?
● To avoid this:

– float result = max (0.0, dot (a, b));

Point / Directional / Spot Lights

● Were built-in
● Spotlight (Webb?)

Gamma Correction

● Colours and voltages
● Don't correct textures
● sRGB colour palette

Gamma Correction

colour = pow (colour, vec3 (2.2, 2.2, 2.2));

Gives you the full range of colour intensities on your
display

Questions

● Q. More than one light? How?
● Q. Problems with that?

Further Reading

● Do a Phong lighting tutorial first
● Challenge: Can you figure out how to roll-off the light

with distance?
● Deferred lighting and deferred shading, G-buffers
● BDRF
● Radiosity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

