

Multi-Pass

Anton Gerdelan
<gerdela@scss.tcd.ie>

antongerdelan.net
Trinity College Dublin

webGL

mailto:gerdela@scss.tcd.ie

bkrd

● People have wanted web virtual ~ for ages
● VRML (1994)
● Second Life
● Early engine browser plug-ins

– OGRE (~2005)
– Unity 3d

source: http://pauillac.inria.fr/~codognet/vrml/creatures.html

what went wrong?

● slow download/parsing
● slow rendering

– In-browser execution
– antiquated 3d tech. / no shaders / clunky interface

● download proprietary plug-in
● limited to particular browsers or platforms

since

● Mobile development and Opengl ES
– Cut-down [reliable] version of OpenGL
– Catered to web-developers; n = 100n

● Microsoft failed {SL,DX Mob/web}
● Flash died
● Everything has a GPU
● HTML5
● Mozilla <canvas> experiments hack OpenGL in

webgl

● Access the GPU and write shaders
● Browser is the platform*
● Interface based on cut-down OpenGL ES
● *Interface must be implemented by vendor of browser
● Compare this to traditional limitations of

– Direct3D
– OpenGL

● Security concerns and big corp. hold-outs ($$$$$$).

wha

● games
● 2d and 3d vector graphics
● interactive visual experience
● extremely fancy advertisements
● virtual reality worlds*

*supporting technology pending

xp

how

● Default interface through JavaScript (hmm...)
– 90% the same as modern OpenGL with C or

OpenGL ES

● Write shaders in GLSL (exactly the same as ES)
● But...

– three.js {engine, web-designers, ~GLUT}
– Dart (OO, compiles to fast JS)
– emscripten transcompiler to JS

why

● v quick dev vs compiled
● build once and run on everything (incl mobile)

(ask about OpenGL dev)
● no plugins
● combine w websites and web interfaces

(ask about Qt + 3d)
● great for portfolios/sharing/tinkering and

impressing EU project reviewers

whr

● basic webgl and JavaScript
– http://learningwebgl.com/

● three.js – website has tuts.
– And lots of really nice demos/experiments

● Dart – website has tuts.

● codeflow.org – a great blog
● Udacity – free/paid online 3d

graphics course
https://www.udacity.com/course/cs291

http://learningwebgl.com/
https://www.udacity.com/course/cs291

ex

ex

Next get “WebGL 1.0 Quick Reference Card” from the Khronos
Group as primary reference
https://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf

https://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf

ex – try now?

<!DOCTYPE html>

<html><body>

<canvas id="canvas"></canvas>

<script type="text/javascript">

var canvas = document.getElementById ("canvas");

var gl = canvas.getContext ("webgl");

gl.clearColor (1.0, 0.0, 0.0, 1.0);

gl.clear (gl.COLOR_BUFFER_BIT);

</script>

</body></html>

Ex – 3d points that make a triangle

● Triangle has how many 3d points?
● Screen area is in range of -1.0 to 1.0 on x,y,z axes
● Make a 1d array containing x,y,z,x,y,z,x,y,z

var pts = [

-0.5, -0.5, 0.0,

0.0, 0.5, 0.0,

0.5, -0.5, 0.0

];

Ex – copy points into GPU memory buffer

var vbo = gl.createBuffer ();

gl.bindBuffer (gl.ARRAY_BUFFER, vbo);

gl.bufferData (gl.ARRAY_BUFFER, new
Float32Array (pts), gl.STATIC_DRAW);

● “vertex buffer object” (VBO)
● old-fashioned “binding” conventions
● see reference card for details

Ex - shaders

● Rendering anything requires a “shader program” which
defines a style of rendering.

● Two parts
– Vertex shader (how to position each vertex point on screen)
– Fragment shader (how to colour each pixel-sized piece of

triangle)

Ex – vertex shader

● Write/read a little GLSL programme into a JS string.
● Looks like C.

var vs_str =

"attribute vec3 vp;" +

"void main () {" +

" gl_Position = vec4 (vp, 1.0);" +

"}";

Input a single xyz point

Output an xyzw point i.e.
“put straight on screen”

Ex-fragment shader

● Pretty much the same style
● Output is a colour in RGBA
● Q. What colour will the triangle be?

var fs_str =

"precision mediump float;" +

"void main () {" +

" gl_FragColor = vec4 (0.0, 0.0, 1.0, 1.0);" +

"}";

red, green, blue, alpha

Ex – compile shaders, link together
var vs = gl.createShader (gl.VERTEX_SHADER);

var fs = gl.createShader (gl.FRAGMENT_SHADER);

gl.shaderSource (vs, vs_str);

gl.shaderSource (fs, fs_str);

gl.compileShader (vs);

gl.compileShader (fs);

var sp = gl.createProgram ();

gl.attachShader (sp, vs);

gl.attachShader (sp, fs);

gl.linkProgram (sp);

● Tedious busy-work
● Compiles each mini-program, links together so it will run on the GPU

Ex – use program, draw vertex buffer

gl.useProgram (sp);

gl.bindBuffer (gl.ARRAY_BUFFER, vbo);

gl.vertexAttribPointer (0, 3, gl.FLOAT,
false, 0, 0);

gl.enableVertexAttribArray (0);

gl.drawArrays (gl.TRIANGLES, 0, 3);

● Enable shader and buffer of points
● Describe data format (every 3 floats is a variable)
● Draw 3 points from buffer in triangles mode

ex

● Should work
● 49 lines of html + js + glsl
● Interface a bit tedious

– hide away in a “utils” file or
– use a framework like three.js

● Can now
– Draw more triangles (from a mesh file)
– Make fancier shaders
– Add interaction, animation, sounds, etc.

skills

● JavaScript and HTML
● Linear algebra (vectors, matrices)
● GLSL shaders (not very hard, but strange)
● (Can skip / hide from some stuff by using three.js)
● Eye for good visual design (or actual theory)

– Colours
– Spatial/depth
– User interaction

pers

● Is this an easy/fun way to get into 3d? = yes
● Is this a quick/powerful game jam platform? = yes
● Issues?

– JavaScript bugs
– Not quite cutting edge gfx
– All your code is visible
– Compat/cross mostly solved
– Wide range of hardware - min()

pers

● Problems to solve
– Multi-player / multi-user.
– Commercialising
– Streaming/handling large files (meshes/textures)

● New stuff
– Touchscreens
– Fullscreen
– Websockets
– Game input handler (joysticks/gamepads)

warez

● I have loads of stuff on github
https://github.com/capnramses

● And my games are playable from
http://antongerdelan.net/games/

● And my email:
gerdela@scss.tcd.ie

● And I live in F.30-something (one of the big bull-pens) in
the top-floor of O'Reilly

https://github.com/capnramses
http://antongerdelan.net/games/
mailto:gerdela@scss.tcd.ie

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

